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DIFFERENCE EQUATION FOR ASSOCIATED
POLYNOMIALS ON A LINEAR LATTICE

N. M. Atakishiyev, A. Ronveaux, and K. B. Wolf

We discuss the difference equations on a linear lattice for polynomials associated with the classical Hahn,
Kravchuk, Meizner, and Charlier polynomaials.

1. Introduction

The three-term recurrence relation satisfied by orthogonal polynomials can be written in matrix form
using the well-known tridiagonal Jacobi matrix. For monic polynomials (with the coefficient of its highest
degree term equal to one), the recurrence relation

pn+1($) = (I - ﬁn)pn(x) - 7npn—1(z), Tn ?é 0, n>1, (1'1)
po(z) = 1, pi(z) = = — Po,

corresponds to the Jacobi matrix equation

JP(z) = zP(x), (1.2)
where
po(z) Po ﬁl .
P(z) = g;g; S (1.3)

This, in many ways, is equivalent to the study of the properties of orthogonal polynomials that follow
from recurrence relations or from the properties of the Jacobi matrix J. (For example, the roots of the
characteristic equation for J, cut to the first N rows and columns, coincide with the zeros of py(z).)

Modification of the sequences {f,,7n}, keeping v, # 0, generates new families of polynomials that we
call p,(z) (for a new matrix J), which are still orthogonal in accordance with the theorem attributed to
Favard [1]. These families p,(z), related by the modifications to p,(z), have already been investigated
by many authors: for instance, the co-recursive of p,(z) by Chihara (2], Ronveaux and Marcellan [3],
polynomials associated with p,(z) [4], and co-modifiers of p,(z) [5]. See also references [6-10].

Recently, a more peculiar characterization of p,(z) has reclaimed interest: knowing the differential
equation satisfied by p,(z), find a differential equation satisfied by p,(z). In fact, it appears that in
almost all situations, this is a fourth-order linear differential equation when p,(z) satisfies a second-order
one. Polynomials p,(z) that correspond to any finite modification of the {f3,,vn} sequences can always be
represented in the following way [6]:

pn(z) = A(z) pa(z) + B(z) p\ (2) (1.4)
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where pftl_)l(:c) is the so-called associated polynomial of p,, () (also called the numerator polynomial). These
polynomials verify the recursion relation (1.1) with coefficients {Bn+1,n+1}, and are defined by

(1) _ _1_ Pn(l') _pn(y)
Pnoy(z) = po/,——_z—y du(y), (1.5)

where px = [, zF du(r) is the kth moment of p(z), I is the support of the measure du(z), p(()l)(z) =1,

p(ll)(x) =z — [, and A(z) and B(z) are polynomials which are easily computed from knowledge of the
modifications [6].

From the representation (1.4) of the perturbed polynomials p,(z), it is possible to find the differential
equation they satisfy if we know the differential equation for p,(z) (7] and the differential relation between
pf,l_)l(x) and p,(z). For the classical (continuous) cases, namely of Jacobi, Bessel, Laguerre, and Hermite,
this differential relation is known (see below) and can be written in terms of polynomials o(z) of degrees
less than or equal to 2, and 7(z) of degree 1 [6]. The weight function p(z) for the measure du(z) = p(z) dz

can be found through the Pearson differential equation

d(o(z)p(z))

= = Z)p(s), with /Ip(a:)l‘k dr < oo, Vk. (1.6)

The family p,,(z) is orthogonal with respect to the weight function p(z) and satisfies the differential equation

L2 [pn(z)] = o(2)pn(z) + 7(2)py () + An pn(z) =0,

An = —%n[2r'+(n— 1)o"]. (1.7)

The differential relation lihking the associated polynomials to the derivative of the originating polynomial
family is (8]

L3 [p, (2)] = kpl(2), (1.8)
~where L3 is the formal adjoint of L, explicitly given by [3]

2

z + [20'(z) — 7(2)] 4 +[An 40" =7 =Ly + 2[0'(z) - 7(z)] 4 +o" -7, (1.9a)

L =
2 = o(x) dr dz

and the constant is
k=o0c"-2r" (1.9b)

In many cases, this differential relation allows one to construct the fourth-order differential equation satisfied
by the associated polynomials, which is readily obtained from Eq. (1.8) by application of the second-order
differential operator that annuls p (z).

The aim of this article is to extend this technique to the classical (discrete) orthogonal polynomials of
Hahn, [11]! Kravchuk, Meixner, and Charlier, which are solutions of the difference equation [12]

D2 [pa(®)] = 5(2)VApn(2) + 37()(A + V)pa(2) + Aapa(z) = 0, (1.10)

with the same A,, as in Eq. (1.7). We recall the definition for the forward and backward difference operators

Af(x) = flx+1) - f(z),  Vf(z)=flz) - flz - 1), (1.11a)

IWe note that it was P. L. Chebyshev who introduced the Hahn polynomials with discrete orthogonality in 1875.
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the corresponding “Leibnitz” rules for them

Alf(z)g(x)] = f(z)Ag(z) + g(z + 1)Af(z), (1.11b)
V[f(z)g(z)] = f(z)Vg(z) + g(z - 1)V f(z), (1.11c)

and the relation
AV=VA=A-V. (1.11d)

The discrete weight function p(z), under which the polynomials p,(z) are orthogonal, satisfies the
Pearson-type difference equation [12]

Alo(2)o(2)] = r(2)p(a), (L12)

where
7(z), 7(z)=7(z), (1.13)

and it is assumed that all moments px = Y p(zn) =¥ are finite.

To construct the difference equation satisfied by the perturbed family p,(z) in (1.4), or equivalently,
to study the properties of the Jacobi matrix J, we have to search for a difference operator—Ilet us call it
D3—that plays the same role as L3 in Eq. (1.8). To do this, we shall use, mutatis mutandis, the techniques
previously applied to the classical (continuous) case (8], with the same notations.

2. Difference relation for associated classical discrete polynomials

It is well known that functions of the second kind

N—
Z ' (2.1)
1=0

1
£0

with a zero moment py of the weight defined in (1.12), are nonpolynomial solutions of the recurrence
relation (1.1) [7]. The summations run over all points of the discrete orthogonality measure y; (j =

0,1,...,N —1). On the other hand, the function Q,(z) = ¢n(z)/p(z) satisfies the same difference equa-
tion (1.10) for the polynomial p,(z) [13]. In this way, the link between Q,(z) and r,(z) = pf1 )1( ) can be

exploited, which follows from the relations (1.5) and (2.1), i.e.,

ra(z) = p(z) [Qn(m) - Qo(f)Pn(iE)]- (2.2)

We note that with the aid of (1.11d) and (1.13), it is more convenient to rewrite Eq. (1.10) for p,(z)
and Qn(z) as

04 (2)Qn(z+ 1) + 0_(2)Qn(z — 1) + [An — 04 (z) — 0_(2)]Qn(z) =0, (2.3)
Wi
04(2) =5(@) + 57(x) = o(2) +7(2), (2.4)
ool ) — %7"(1:) = i)

To find a difference analogue of Eq. (1.8) for r,(z), let us first compute r,(z £+ 1):

ra(z 1) = p(z £ 1)[Qn(z £ 1) - Qo(z £ 1) pa(z 1)) (2.5)



From the difference equation for the weight function (1.12), we deduce that

o4 (x)

p(z 1) = mp(x)v (2.6)
and therefore, r,(z + 1) can now be written as
rale £ 1) = 222 (@) [Qn(e £ 1) - Qolo  Upala £ 1) 2.7

The equations satisfied by Q,(z) and Qo(z) suggest that the two relations

Ri=0_(z+1)ra(z +1) = 04(2)p(z) [@n(z + 1) = Qo(z + 1)pa(z + 1)], (2.8)
Ry = 04(z — 1)ra(z = 1) = 0_(2)p(z) [@n(z — 1) = Qo(z — 1)pa(z — 1)],

be summed to yield
Ri+Ry=[o_(z+ Dra(z+1)+o4(z - ra(z - 1)] =
= —[An = 04(2) = 9-(2)]Qn(z)p(z) -
~{0+(@Q0(@ + Dpa(z +1) = [0+ (£)AQ0(z) - - (2)Q0(2)]pa(1) } () (2.10)
or
R+ Ra = ~[An — 04.(2) = 0_(2)]ra(2) — 04 (2)p(@)AQ0(2) [pu(e + 1) — palz — 1)].  (2.11)
The difference relation we search for now reads
[0 (2 + V)ra(@ +1) + 04(z = 1)ra(z1) + {An — 04 (z) — 0 (2) }ra(z)] =
= —p(z)o(2)VQo(z) [pn(z + 1) — pn(z1)], (2.12a)

. where we have used the equality
04+ (2)AQo(z) = 0(z)VQo(z), (2.12b)
which follows from (2.3) for n = 0, i.e., when Ag = 0. We may write (2.12a) in operator form as
D3 [rn(x)] = [a_(:r +1)A -0 (z1)V+ A+ A0_(z) - VU+(x)]rﬂ(x) =
= —p(z)o(2)VQo(z) [(A + V)pn(z)]. (2.13)

In analogy with the continuous case, the difference operator D3 can be identified as the formal adjoint
of D, in (1.10), namely

D3f(z) = AV[3(2){(@)] - 5(A + V) [F(@)f(x)] + Anf(z) =
- {Dg + [6'(z) - #(@)| (A + V) + (3" - ) [%_(A =7} + 1] } f(z). (2.14)

where we have used the involution property A* = —V. In the limit when the lattice step h — 0, Eq. (2.14)
coincides with the relation between L, and Lj in (1.9a).

Now it remains only to simplify the last expression in (2.13) by employing the fact that the factor
p(x)o(z)VQo(x) is the constant . This becomes evident upon writing the difference equation (1.10) in
the self-adjoint form [12]:

A[a(r)p(r)VQ,,(x)] + Anp(2)Qn(z) =0, with Ao = 0. (2.15)
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The value of the constant &’ can be found from

Qo(2)p(z) = 2 25, (2.16)

j=0 .‘L‘j =T

which follows from the definition of Q(z) and relation (2.1). Computing VQo(z) from Eq. (2.16), we
obtain

a(z)p(z)VQo(z) = o(x) NZ_I M - [a(:r )+ 7(z - 1)] NZ—:I M- (2.17
Po p 0 j___oxj-r . jzon-\‘-l—l‘. ) )

To evaluate the constant, we may let £ — 0o on both sides of this equation. We write first the polynomials
o(z) and 7(z) explicitly as

o(z) = =o"z% + o' (0)z + 5(0), 7(z) = 'z + 7(0). (2.18)

2
The asymptotic development of f(z) and f(z — 1) with f(z) = Z;v:_ol p(zj)/(z; — ) gives, up to terms
proportional to 1/z2

Po  P1 Po  Po+t p1
s oe e -nN-2_8-7 2.1
fo~-2-8  je-px-2-22 (2.19)

where p; is the first moment. From this it follows that, for large z, the right-hand side of (2.17) behaves as
a constant, (7' — 2o"') po, and therefore,

1
7
/) /

lim p(z)o(z)VQo(z) = 7' - =K = —okK (2.20)

1
T—00 2
Substituting (2.20) into Eq. (2.13) leads to the sought-for difference relation

D3 [p2,(2)] = 54(A + V)pa(a) (2.21)

between r,(z) = PS: )1( z) and pn(z). In the limit when the lattice step A — 0, (2.21) coincides with the
differential relation (1.8) because in this limit, D3 — L and A + V — 2d/dz.

The discrete Chebyshev orthogonal polynomials t,(z) are derived for o(z) = z(N — z) + ;N and
7(r) = N — 2z. They have a uniform weight p(z;) = 1 and are Hahn polynomials Q,(z;a, 8, N) with
a = =0 (see p. 29-30 in [14]). As the number N of discrete points tends to infinity, t,,(z) coincide with
the Legendre polynomials

lim ¢, (%(1 - :c)N) = P.(2). (2.22)

It isJ interesting to note that D3 = D, for the discrete Chebyshev polynomials, because ¢'(z) = 7(z). The
last relation also holds for the classical Legendre polynomials, for which L} = L,.

3. Fourth order equation satisfied by the associated polynomials

In this section, we address the problem of finding the difference equation satisfied by the discrete asso-
ciated polynomials pf,l)(:c), defined from the difference relation (2.21), where the originating polynomials
pn(z) satisfy the difference equation (1.10). We rewrite (2.21) for convenience as

P.(z) = 27! D3 [p) | (2)] = (A + V)pa(z). (3.1)
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This difference equation for P,(z) should not contain the originating polynomials p,(z); it turns out to be of
fourth order. For this reason, we recall that the hypergeometric-type difference Eq. (1.10) or, equivalently,
equation (2.3) satisfied by the originating polynomials, is of the form

[a+(z)A —-o_(z)V + /\,,]p,,(z) = () (3.2)

with A\, and 04 (z) defined in (1.7) and (2.4), respectively.
Let us now multiply equation (3.1) by o (z) and use (3.2), i.e

04 (2)Pa(z) = 04 (2)(A+9)pn(2) = [0-(8)V=An]pn(2)+04(2) VPa(z) = [25(0)V-An]pn(@),  (33)
where we have used o4 (z) + 0_(z) = 20(z). Next, we apply A to both sides of (3.3), obtaining
Ac 4 (2)Pa(z) = 26(z + 1)(A = V)pn(z) + 2[A5(2)] Vpn(2) — Anlpa(z) =
= [25(:15 -1) - /\,,]Apn(x) —20(z)Vpn(z), (3.4)

where we have used relations in (1.11b) and (1.11d). Analogously, we multiply Eq. (3.1) by o_(z) and
apply V to obtain

Vo_(z)Pn(z) = 20(z — 1)(A — V)pu(z) + 2[V&'(x)]Apn(a:) + AnVpn(z) =
= 20(z)Apn(z) — [25(:1: = 1) = An| Vpa(z). (3.5)
(

We now have three equations relating P,(z) and p,(z): Egs. (3.1), (3.4), and (3.5). This allows us to
eliminate Apn(z) and Vpp(z). We multiply (3.4) by 25 (z) and subtract (3.5) multiplied by [25(z+1) = An),

25(z) Aoy (z)Pa(z) — [26(z + 1) — Aa] Vo_(2) Pa(z) =
= {-45(z)* + [20(z + 1) — A\n] [26(z — 1) — An] } VPu(z) (3.6)
Similarly, we multiply (3.5) by 20(z) and add (3.4) multiplied by [25(z -1) - /\n] to obtain
20(z)Vo_(z)P,(z) — {23(x —1) = An] Aoy () Pa(z) =
= {45(2)? - [26(z + 1) — A\s][26(z — 1) — An] }Apn(2). (3.7)

We subtract (3.7) from (3.6), noting that the resulting right-hand side will contain the factor of (A+V)p.(z),
namely

(z) =40(z)® - [20(z + 1) — A] [25(z — 1) — A] =
= (25'(z))” + 4(An — 0")F(z) — (An — 0”2, (3.8)

which, due to (3.1), is P,(z).
Hence, the polynomial P,(z) defined in (3.1) satisfies the second-order difference equation

D;[Pa(z)] = [26(z) +25(z — 1) — A ]Aa+(x)P (z)+
+ [25(z) + 25(z + 1) — Aa] Vo () Pu(z) + E(z)Pa(z) = 0. (3.9)

From here and (3.1), the associated polynomials r,(z) = pfl)l( ) therefore satisfy the factorized fourth-

-order difference equation ~
D, [Dj(ra(z))] = 0. (3.10)

In the limit when the step h of the linear lattice under consideration tends to zero, (3.10) coincides with
the fourth-order differential equation for the associated polynomials,

d
Ly+o'(z)—+ 1 gpfll ) =0, (3.11)
dzr
which was discussed in detail in [3].
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4. Conclusions

The difference relation (2.21) obtained for the first associated orthogonal polynomials on a linear lattice
can probably be extended to nonuniform lattice cases. These are of fundamental importance in constructing
the representations of quantum groups. For the first associated polynomials, the basic property that the
function Qn(z) = qn(z)/p(z) (see (2.1)) satisfies the same difference equation as p,(z) is still true for
nonlinear lattices. For the higher associated polynomials, a different approach should be considered, as in
the continuous cases [4,10]. Work is in progress.
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