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Abstract

We solve finite-difference equations that describe a model of the relativistic linear oscillator
in a homogeneous external field by Lie algebraic techniques. The corresponding wavefunctions
span the discrete and continuous representations of the symplectic algebra.

1 Introduction

The quasipotential approach [1]-[3] allows the development of a relativistic quantum mechanical
description [4]-[6], based on the relativistic three-dimensional configuration 7—space [4]. Although
this approach is closely analogous to nonrelativistic quantum mechanics @ la Schrédinger, its essen-
tial characteristic is that the relative motion wavefunction satisfies a differential-difference equation
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with step equal to the Compton wavelength of the particle, A = ii/mec. For two scalar particles
with equal masses m, local quasipotentials V(7) lead to the equation [5]

[Ho(7) + V(M) $(7) = E¢(7), (1.1)

with the free Hamiltonian

ih i I? ih
= - h r a9 —Ur| .
Hy(7) = mc [cosh 0: o sm mca + Smer)? exp mca (1.2)
where [ = —ih(7 x V) is the orbital angular momentum operator, 8, = 8/8r and we have the

finite-difference operator action exp(ad;) f(r) = f(r + a).
In framework of the quasipotential description, the transformation between configuration and
its canonically conjugate momentum space is given by the relativistic plane wave (7]

— =\ —l—imcr/k
- _(Po—p-m
,7) = (2220 ,

F=ri, @t=1, 0<r< o, (1.3)

rather than by the Fourier kernel exp(ip’- 7/h) in the nonrelativistic case. This relativistic plane
wave is the generating function for the matrix elements of the principal series of unitary irreducible
representations of the Lorentz group SO(3,1). The momenta of positive mass particles belong to
the upper sheet of the mass hyperboloid p —5? = m2c?, and form a three-dimensional Lobachevsky
space whose group of motion is the Lorentz group. The functions (1.3) are eigenfunctions of the
Hamiltonian Ho(7) in (1.2), and in the nonrelativistic limit (z.e., when 7 > A/mc and |p] < mc )
they coincide with the Euclidean plane waves exp(ip- 7/R).

Within this version of relativistic quantum mechanics, various exactly solvable phenomenolog-
ical quasipotentials were considered in Refs.[4]-[6],(8]-[14]. In particular, a relativistic model of
the linear oscillator was studied in detail in Refs. [8]-[10]. This model was considered for the the
case of a constant external force F((z) = —g, i.e., in the presence of a homogeneous external field
V,(z) = gz in Ref.[12]. The wavefunctions were found both in the relativistic configuration z and
momentum p realizations; it was shown that, in contrast with the nonrelativistic case, here one
has both a discrete energy spectrum and a continuous one, depending on the value of the force |g|
relative to mcw, where w is the oscillator frequency (see below). The generalized coherent states
for this model were built out of the bound states for this model in [13].

There are also algebraic approaches to the description of quantum systems by the theory of
dynamical symmetries (15, 16], potential groups [17], Casimir operators with mixed spectrum [18],
and the ‘Euclidean connection’ [19]. In these approaches, the key role is played by the dynamical
algebra whose generators connect states of different representations of the symmetry subalgebra.
In particular, it has been used to find the energy spectrum, the wavefunctions, and transition
probabilities. Among the generators of the dynamical algebra is the Hamiltonian, the symme-
try commutant algebra of the latter, and raising and lowering operators which do not commute
with it. As a consequence, the eigenfunctions of the Hamiltonian form a basis of an irreducible
representation of the dynamical algebra.

In Section 2, the algebraic approach is applied to solve the finite-difference equations for the
relativistic linear oscillator model in a homogeneous external field. It is shown that the dynamical
algebra of the oscillator model generates the Sp(2,R) covering group of Sp(2,R). The explicit
form of the wavefunctions for the discrete and continuous spectra (both in the configuration and
momentum realizations) are discussed in Sections 3 and 4, respectively. The Appendix contains
various interesting formulas and relations for the orthogonal polynomials of Meixner—Pollaczek,
Laguerre, Hermite, Meixner and Charlier.
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2 The relativistic oscillator in a homogeneous external field

The wavefunction in one-dimensional configuration space z for the relativistic model of a linear
oscillator in a homogeneous external field is defined as [9]

#e)= o= [ a0, 60,2 v(e), (21)

where d2, = mc dp/po is the invariant volume element in the momentum realization, p3 = m?c?+p?,
and the plane wave £(p,z) has the form [cf. the kernel (1.3)]

_(po—p —imez/h .
o) = (B22) (22)
The free Hamiltonian Ho(z) and momentum P, operators are the finite difference operators
ih
= mc? cos b
Ho(z) = mc* cos mcax, (2.3a)
., th
P; = —mesin h— 0z, (2.3b)
mc
Ho(z)? - 2 P2 = m%c!, (2.3¢)

which commute with each other and have a mutual eigenfunction (2.2) with eigenvalues pg and p,
respectively. They satisfy the following commutation relations with the relativistic coordinate z:

(2, 2] = 2 Ho(), (2.40)
[z, Ho(z)] = %Pz. (2.4b)

The relativistic model of the one-dimensional harmonic oscillator studied in detail in Refs. 8, 9]
has the Hamiltonian
M7 (z) = Ho(z) + V(2)

mw? th th
_ LA TN 2.
Ho(z) + Tz (:z: + mc) exp 120, (2.5)
The “prolonged derivative” or generalized momentum operator [cf. (2.4b)] is
) 1
Pp = 2L [Ho*(z), 2] = P= = ZV(2), (2.6)

and satisfies the following commutation relations with z and H°**(z):

[2,P:] = T—i%?‘("“(:c), (2.7a)
[Ho*(z), Ps] = imhw?z. (2.7b)

Besides, for this particular potential (2.5) we have [cf. relation (2.3c)]

2
(H*¢(z))? = 2P? = m?c? (1 - %12) . (2.8)
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From (2.6) and (2.7) it follows that the triplet z, P, and H°*°(z) closes into the Lie algebra of
Sp(2,R). Indeed, the operators

. 1. ose . mc . c
I\o’-: EH (IL‘), 1\1 = TI, 1&2 = —E;PI, (290,)

obey the standard commutation relations for the Sp(2, ) generators,
(Ko, K1) = 1Ky, [N2,Ko) =1K:1, [Ki,K2]=—iKo, (2.95)
and provide the Casimir invariant
K? = K3 - K} - K} = s(s + 1)1, | (2.10a)
From (2.8) we see that K2 is (mc?/hw)?1 and thus s(s + 1) = v(v — 1), with

1 1 me?\ 2 "
= - - — ] 2 1. .

v=g+ 4+<hw> >1 (2.100)

The eigenvalue s = —v is not necessarily an integer and corresponds to the unitary irreducible

representation of the covering group Sp(2,R) denoted D*(—v) [20]. The spectrum of the compact

operator Ky is bounded from below and has the values —s4+n =v+n,n =0,1,2,.... Consequently,
the energy levels of the model Hamiltonian (2.5) are

E, = w(n +v), To=10,1:2:55:5 (2.11)

Thus the introduction of the generalized momentum operator P, leads directly to the dynamical
algebra §f>(2,§2) for this model. We should underline that in (2.6)-(2.8) we provide companion
operators to the Hamiltonian that close into an algebra, and will raise and lower the latter’s
eigenvalues (2.11). This is distinct from the more common (and more complicated) procedure of
factorizing the Hamiltonian under consideration (cf. Ref. [9].) .

The same line of reasoning is also valid for the relativistic model of the linear harmonic oscillator
(2.5) in a homogeneous external field, governed by the difference equation

H(2) ¢ (z) = [H7(z) + 92] ¥*(z) = EY*(z). (2.120)

Since H°*° = hwKo and z = (h/mc) K7, the equation (2.12a) can be written in terms of the Sp(2,R)
generators of the model (2.5) in the absence of external force, as

h :
(ﬁuKo + %Kl) P (z) = E¢9(z). (2.12b)
From the commutation relations (2.9) for the Sp(2,R) generators, it follows that
exp".”{2 Ko exp“’K2 = Ko cosh @ + K;sinhé, (2.13a)
exp™ %2 J; exp®® = Kosinh 6 + K, cosh 6. (2.13b)

Therefore, by means of the unitary transformation $9(z) $9(z) = exp~¥K2 9(z), the eigenvalue
equation (2.12b) can be written as

(aKo + bK1 )P4 (z) = E49(z), (2.14)

where a = fuw cosh §+(gh/mc)sinh 6 and b = hwsinh 6+ (gh/mc) cosh 6. Consequently, by choosing
a suitable angle 6, one of the coefficients @ or b can be annulled, according to whether |g| < mew
or |g| > mew, respectively. Then, the left-hand side of (2.14) will contain only one term, either in
Ko or in K; up to a constant factor [15]. Let us consider these two cases separately.
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3 The states of the discrete spectrum

In the case |g| < mcw we can choose tanh§, = —g/mcw, leading to & = 0 and a = (RA/mc) x

V(mew)? — g% = hwsin ¢y, where the angle @y is defined through ¢ = mewcosdy, 0 < ¢, < .
Equation (2.14) is then reduced to the eigenvalue equation for the compact generator,

hwsin ¢g Ko9®(z) = E9°(z), (3.1)

having discrete spectrum n + v. Therefore, the energy spectrum for the bound states of the model
(2.12) is [¢f. Eq. (2.11)]
E, = hw(n + v)sin ¢g, n=0,1,2.... . (3.2)

where v is related to the Casimir operator eigenvalue v(v — 1) in (2.10). Since (3.1) coincides with
the equation for the relativistic linear oscillator in the absence of external force (2.5), the unitary
transformation in the case when |g| < mew

P(z) = Sg9(z), S, = exp(ifK,) (3.3)
relates bound states for arbitrary g with bound states for ¢ = 0 [13], i.e.,
¥3(z) = S,93() = S,90(2). (34)

We note that in the nonrelativistic limit, the operator S, coincides with the unitary shift oper-
ator exp(zo d/dz), zo = g/mw?, and the relation (3.4) reflects the fact that in quantum mechanics
the presence of the external field V;(z) = gz does not change the form of the harmonic oscillator
potential, but only shifts its equilibrium position, namely 94(z) = exp(zo d/dz)¥S(z) = ¥2(z + z0)
[21].

To find an explicit form [12] for the wavefunctions ¢ one can start with the momentum re-
alization, in which the Hamiltonian (2.12a) is a second-order differential operator, and to define
them in the z-realization afterwards by using the transformation (2.1). It is also possible to look
directly for solutions of the difference equation (2.12) via expansion in generalized powers by using
the method of undetermined coefficients (see, e.g., [22]). In the next Section, however, it will be
shown that this particular difference equation is simply solved with the aid of Gauss’ recursion
relation for the hypergeometric functions F(a,8;7;2) [23], i.e.,

a(l-2)F(a+1,8;7;2) + (@ —7) Fle—1,8;7;2)

+e(2 - 2) + v — Bz] F(e, B;7;2) = 0. (35)

The reason for leaving this derivation to the next Section is that the continuous case turns out to
be more general, t.e., it will contain also the discrete case.

The orthonormalized eigenfunctions of (2.12a) in the momentum realization are given [12] in
terms of the generalized Laguerre polynomials [23] by

¥ (p) = c&n” exp(ine'®s) L2~ (2nsin @),
n'

m Zn(2 sin ng)v. (36)

c
= — e
n=s=(po+p)
The orthorormalized wavefunctions in the z-realization (3.4), related with (3.6) by the transfor-
mation (2.1), are expressed through the Meixner-Pollaczek polynomials PY(z;¢) and their weight
function [24] as



66 N. M. Atakishiyev, S. M. Nagiyev and K. B. Wolf

=4 >u ~ Sim fiw ilx/2— iz
Yi(z) = & PY(Z;¢9)T(v +i%) (;c?e (/2 ¢g)> ,

P="C, &= s (3.7)

h V2rh ve—intv)dg I

4 The states of the continuous spectrum

In the case when |g| > mcw, we can choose tanhf; = —mcw/g; then a = 0 and b = (h/mc) x
Vg% — (mcw)?, reducing (2.14) to the equation

i = .

— g% — (mew)? K19¢9(z) = E¢P9(z). (4.1)

Since the noncompact Sp(2,R) generator K has the continuous real spectrum ~ € ®, from (4.1)
it follows that the corresponding wavefunction %9(z) belongs to the continuous energy spectrum

E = (kh/mc)y/g% — (mew)? = khwsinh ¢, (4.2)

where |g| = mcw cosh g and 0 < ¢y < co. Thus the eigenfunctions of the operator (2.12a) in this
case satisfy the difference equation

([5:(2': +i) 4+ (v —1)]e% +v(v —1)e™% £ 2,/v(v — 1) £ cosh gog> P (z)

= 2x\/v(v — 1) sinh g, ¥9(z), (4.3)

in which Z = mcz /h is the dimensionless variable in configuration z-space, and the + signs corre-
spond to the positive and negative values of g, respectively. To symmetrize the coefficients of the
difference operators exp(£i0;) in the equation (4.3) let us make the substitution

¥(z) = [v(v - D]7#T(v + i2) f(z; 9), (4.4)
that converts (4.3) into
(v —i%) e + (v + i%) e”'% + 2% cosh wg] f(z;9) = 2% sinh ¢y f(z;g). (4.5)

We note firstly that in the case of the discrete spectrum, this substitution separates out the factor
that determines the asymptotic behavior of ¥J(z). Secondly, since the energy E does not depend
on the sign of g [see (4.2)], from (4.5) it follows that f(z,—g) = f(—z;¢). Hence, the negative sign
in (4.5) may be supressed without affecting the generality of its solution.

Now it remains only to compare (4.5) with (3.5) in order tofind that

f(z;9) = e 279D (y 4 i2) F(v + i%,v — ik; 2051 — e 2%9), (4.6)

On combining the formulas (4.4) and (4.6), we get the explicit form of the wavefunctions for the
continuous spectrum as

W(z) = (f‘_"_eff/Q-*’g) T(v +i2) F(v + i8,v — ix;20; 1 — ¢~299), (4.7)

mc?
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Knowing this, it is easy to define the wave functions in the momentum realization by using the
transformation inverse to (2.1), which can be written in terms of the dimensionless light-front

variable 7 in (3.6), as .
M (z). 4.8
W)= o= [ b (251) ¥ (48)
Indeed, substituting (4.7) into (4.8) and integrating the hypergeometric series termwise with the

aid of
i o . —it u_—z
gf_wdtf(u-kzt)z =ze -, (49)

yields the explicit form of the wavefunctions in the momentum realization as

V2rh
m

VI(p) = - (—ine¥?)” exp(ine??) 1F1(v — iK; 2v; —2insinh ¢,), ‘ (4.10)

where 1F1(a; 5; z) is the confluent hypergeometric function.

Before closing this section we emphasize that the convenience of using the parametrizations
g = tmcwcoshp, and g = mcwcos @, for the continuous and discrete cases of the previous
and this Section, respectively, is that they can be transformed into each other by the formal
relation ¢, = i¢,. Under this substitution, the formulas (4.7) and (4.10) yield, up to a common
normalization constant, the explicit form of the wavefunctions for the discrete spectrum (3.7) and
(3.6) respectively, after the corresponding replacement k = —i(n+v),n = 0,1,2,.... To verify this
one needs the explicit formulas for the generalized Laguerre and Meixner-Pollaczek polynomials

24
() = L

(2/\)

F1(=n;u; 2), (4.11a)

P)Mz;¢) = Rt P(—n, A+ iz;2);1 — e 24), (4.11b)

In the special case when |g| = mew, the initial equation (2.12b) has the form Ahw(Ko+K1)¥9(z) =
Evy9(z), and the energy spectrum is again continuous and positive, .e., E > 0 (cf. [25], [26]).

5 Appendix

In this Appendix we present some formulas for Hermite, Meixner-Pollaczek, Meixner, and Charlier
polynomials which are used in the body of the text, and some interesting relations that follow from
them.

1. The Meixner-Pollaczek polynomials P}(z;¢) [24] are defined on the full real line —co <
z < oo by recurrence relation

(n+ 1) Prii(z50) = 2((n + v)cosp + zsinp]PY(z;90) — (n — 1+ 2v) PY_y(z;90),

Pilzp)=1, Fsleio) = b, =152 0 0 (A1)

with the parameters v > 0 and 0 < p < 7.
The polynomials PY(z;¢) with different values of the parameter ¢ are related to each other as

Pieipy = (S) 5o (n 2oy (o) ey ()

singa /) (=g SIn 1
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From (A.2) with the aid of the limit formula

-n/2 pv ‘ y e 1
,,li.n;oy /2 pv (\/T/'x,arccos 7—;) = ;L—!Hn(a: + ), (A3)
which can be proven by induction from (4.1), one obtains (cf. [27], p. 388, problem 68)
2. (n
Bz +9)= Y (k) (29)" Hoos(a) (44)
k=0

This relation for the Hermite polynomials can be verified by means of the generating function
[ee] Z-n, ’
Z:O HHn(.’E) = exp(2zz — 2°)
n=

and Cauchy’s rule for the multiplication of two infinite series, i.e.,

Zaank—ZZakbn 2

n=0 n=0k=0
Exactly in the same way, by using the generating function

ZP (z;0) 2" = (1 — 2e™®)=74(1 — 2¢77%) S |2l < 1,

n=0

one can prove the addition formula for the Meixner-Pollaczek polynomials

Y Pz @) Pa_i(vi0) = Pr (2 + 4;9). (A.5)
k=0

2. The Meixner and Charlier polynomials.

The unitarity property S, Sf = 1 of the operator Sy = exp(if,K3), 6; = 3 In[(mcw — g)/(mew +
g)), in (2.17) leads to the known orthogonality relation for the Meixner polynomials of discrete
variable

Mp(z;B,¢) = F(—n,—z; 8;1 - ¢7'),
while the condition (S§)mn = (S¢)nm implies the duality property Mm(n;8,c) = Ma(m;B,c) of
these polynomials. From the equality ¥ (z) = Sy, S;l Y31 (z) follows the addition formula

Z (;)'k (tanh 291 tanh 2(92)’°Mk(n v, tanh? —OI)Mk(m v,tanh? —02) (A.6)
k=0
~ (-1)" cosh 36; cosh16,\” (tanh (8, — 6;))™*"
cosh1(6; —6,) ) (tanh 36;)*(tanh 16,)™
Since the Charlier polynomials C,(z;a) can be obtained from the Meixner polynomials by the
limit formula

M, (m;v,tanh? %(02 - 61)).

ﬁlim M, (z;8,a87 1) = Cpn(z;0a), (A7)
then (A.6) yields, in this limit, the addition rule
(a = b)*t™

anbm

k
a n a
Z( o) Ck(n;a?) Cr(m;b?) = (=1)"e*® Cn(m;(a = 6)?). (A8)
When n = 0 (or m = 0), (A.6) and (A.8) coincide with the known generating functions for the
Meixner and Charlier polynomials, respectively. When 6; = 6, and a = b, these formulas lead to
the orthogonality relations for the same polynomials.
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