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We study the interpolation problem for solutions of the two-dimensional Helmholtz equation, which
are sampled along a line. The data are the function values and the normal derivatives at a discrete
set of point sensors. A wave transform is used, analogous to the common Fourier transform. The
inverse wave transform defines the Hilbert space for oscillatory Helmholtz solutions. We thereby
introduce an interpolant that has some advantages over the usual sinc x in the Whittaker—Shannon
sampling in one dimension; in particular, coefficients of the two-dimensional solution are invariant
under translations and rotations of the sampling line. The analysis is relevant for the optical sampling
problem by sensors on a screen. © 1995 John Wiley & Sons, Inc.

I. INTRODUCTION

Two complementary problems of wave optics and holographic design are: to measure
a scalar wavefield at points on a screen to extract information about the field in all of
space, and to produce such a field through a phase-and-amplitude controlled source on the
screen. In both problems, the approximation of the wavefield by data on a finite number
of point sensors is of practical interest [1]. We consider here the case when the wavefield
is standing and monochromatic, so it obeys the Helmholtz equation.

In two space dimensions r = (x,y) the wave equation is

2 2 2
( 9 o _ ic‘)—)\l’(x,y;t)=0. (1.1)

+
ax?  ay? c¢? ar?

wheré t is time and c is the speed of light. Monochromatic solutions of a fixed real
wavenumber k € R (in units of inverse length) are of the form

Y(x,y;t) = ¢(x,y) exp(—icke), (1.2)
where the function ¢(x,y) is a solution of the Helmholtz equation
02 02
Hyx,y) = (3; + v + k2).//(x.y) = (. (1.3)

Numerical Methods for Partial Differential Equations, 11, 77-91 (1995) ’
© 1995 John Wiley & Sons, Inc. CCC 0749-159X/95/010077-15



78 GONZALEZ-CASANOVA AND WOLF

The Helmbholtz equation is a well-known elliptic differential equation whose plane-wave
solutions are

o (x,y) = —; exp i(k,x + kyy) = L- exp ik - r, k2 + k2 = k2, (1.4)
ot 3

These solutions represent plane waves propagating in the direction of the two-vector
k = (k. ky) that has length |k| = k. The degree of freedom of this vector is in the
angle ¢ with the y-axis, so we may use polar coordinates and write

ky = ksin ¢, y = kcos ¢, ¢ € (—m, 7). (1.5)

We remark that the Helmholtz equation, (1.3), may also exhibit unbounded solutions,
such as exp (x.x + ik,y) with x, and k, real and related by lr - x: = k. In what
follows we shall consider only soluuons of the Helmholtz equatxon that are bounded and
have a well-defined Fourier transform, since we are interested in expressing the solution
as a generalized linear combination of plane waves (1.4). Henceforth, whenever we refer
to the solutions of the Helmholtz equation we imply they are oscillatory solutions of this
kind. Their values and normal derivatives on a line are initial conditions for such solutions.

In Section II we introduce the wave transform [2], [3], closely related to the Fourier
transform, which maps the field functions and its normal derivative at a linear screen onto
the Hilbert space of square-integrable functions on the circle. Section III uses the inverse
transform to define a Hilbert space of functions on the screen that has a nonlocal measure,
and whose norm has the form of energy [4]. Having a Hilbert space, Section IV applies a
classical theorem to approximate and interpolate solutions when the data are on a finite set
of points with the analogue of the criterion of minimal energy. In the concluding Section V
we discuss the improvement this approximation strategy has over the well-known Nyquist
sampling by sinc x = x~! sin x functions, and claim the usefulness of the Helmholtz
interpolant to reconstruct the full field.

Il. HELMHOLTZ WAVE SYNTHESIS

Since the Helmholtz equation is linear, we may write solutions as generalized linear
combinations of plane waves. We first give a relation between this generalized plane-wave
expansion and its generalized two-dimensional Fourier transform. When the latter exists,
Fourier analysis of ¢(r) is

e = F0® = 5 [ drumet-ig . @1
T Joe
with g = (g,,8,) € N2 The direct transform, Fourier synthesis of the wave field, is
y(r) = (Fy) ) = 21— f d*gi(g) explig - r). (2.2)
T Jo

Thus we state the following theorem.
Theorem 2.1. If ¢(r),r = (x,y) € R? is a solution of the two-dimensional Helmholtz

equation, which has a Fourier transform (g), then, for ¢°(¢), a function on the
circleS,

Ylx,y) = \/2—7—[ doy°(¢)exp ik(xsin ¢ + ycos ¢). (2.3)
m™JSs

.
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Proof. Acting with { in (1.3) on (2.2) yields zero. Commuting J{ into the integral
thus leads to

f dg(k* — g2 — g2)i(g)explig - r) = 0. (2.4)
R

Changing to polar coordinates (g,,g,) = [g,?], with g, = gsin ¥, g, = gcos I, this
is

f ga'gfsdﬁ(k2 — g))lg, ?lexplig(xsin & + ycos 9)] = 0. (2.5)
0

If (r) is not zero, the generalized solution to this equation has the generic form

ylg. 9] = 6—(£—k_—g)¢°(z9), (2.6)

where ¢°(8%) is a function over the circle S;. Replacement of (2.6) into (2.2) leads to
(2.3): Q.E.D.

We shall denote by "W the wave synthesis given by (2.3). It is an integral transform
from functions on the circle ¢°(¢) € Fs onto solutions of the Helmholtz equation
Y(x,y) € Fy,

WZFSHFJ{, (2-7)

Ylx,y) = (W¢°)(x,y) = ‘/—L f ddy°(3)exp ik(xsind + ycos3). (2.8)
27 Js

This transform can be inverted, and the richness of known results for the Hilbert space
Fs = L3(S) applied to the image space of solutions F3¢. This is achieved through the
following theorem.

Theorem 2.2. If ¢ = W° is as given by (2.8), then

Yo (9) = %\/; fx dx[«//(x) cos 3 + -ilk-gb’(x)]exp(—ikx sin 3),

for o =signcos ¥, (2.9)

where (x) = Y(x,y)l,=o is the Helmholtz solution at the line y =0 and ¢'(x,0) =

dY(x,y)/dyly=o is its normal derivative across that line. When 9 = '_*'-;-'n', this holds
in the sense of the average limit.

Proof. From the wave synthesis (2.3)-(2.8) we have

Y(x) = Ylx,y)lymo = \/g ,[s d 9y °(9)exp(ikx sin ), (2.10a)

pZC5 ) . ik\’—i [ d¥ cos 9P °(9) exp (ikx sin ). (2.10b)
ay y=0 27 S o

Now change variables to two charts of p = sin ¢ distinguished by o = sign cos ¢,

sodd® = odp/\/1 — p? for 9 # i%vr, and indicate ¢7~*(p) = ¢ °(3) for “forward”
(o = +,ie., |9 < -;—w) and ‘backward’ (o = —, ie., |7 — 9| < —;—w) chart compo-

o

:&'ﬂ iy T
»
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nents, respectively. The integral over the circle thus decomposes into [¢dd ¢°(6) =
fl.,dp(l - p) "yt (p) - f,_‘dp(l - p?) "y~ (p), and we should take care to
reverse the integration range in the last integral. Then we extend the integral to the whole
real line stating explicitly that the integrand function (1 — p2?)~"2 has support on the
interval (—1,1), i.e., is zero for |p| = 1. When ¢°() is continuous at ¢ = t%vr, the
singularity due to the factor (1 — p2)~'?2 at the endpoints is integrable. The two integral
transforms we set out to solve above thus become

k d
Plx) = J; fm \/—I—%[W(p) + ¢~ (p)] explikpx), (2.}18)

k
Y'(x) = ik‘/’; fm dply* (p) — ¢~ (p)] explikpx). (2.11b)

We now apply the Fourier integral theorem to solve for the integrands,

f k
Yt (p) = -!2— - fm dX[t//(x) 1 - p? + l_—lk-z//'(x)]exp(—ikrp). (2.12a)

1 k 1
v (p) = 71,; f‘n dx[tﬁ(x) 1 - p? - Ed/'(.r)]exp(—ilup). (2.12b)

The result given in (2.9) follows when we replace /1 — p? = o cos 9 to reconstruct the
single-chart functions ¢ °(3). Q.E.D.

The wave synthesis operator W in (2.8) is thus an integral transform between
functions ° € Fs on the circle, and initial values {¢/(x), ¢'(x)} € Fsr of solutions of
the Helmholtz equation on the x-axis. The essential support of the latter is the full real
line. We have thus shown that the wave transform can be inverted into an operator W1
that is represented by the integral (2.9). (We do not call it the inverse yet because the
domain and range of this operator will be studied in the following section.)

Remark 2.1. The wavenumber parameter & is fixed and related to the wavelength through
A = 2x/k. A dimensional check on the preceding equations is useful: the units of A are
length (say, microns). Indicating [A] = L, we have [k] = L~!; we may select the function
on the circle to be dimensionless, [#°] = 1; since [p] = 1 and [x] = L, it follows from
(2.3) and (2.10) that

[yl=L"" and [¢p']=L"" (2.13)

Recall that also in quantum mechanics, the physical wavefunctions are not without units: in
one dimension they have units of L™' so that inner products among them, with integration
over the space variable, are pure numbers.

Let us represent the Helmholtz solution initial values by a column two-vector

[y
V¥ (x) = (W(x)). (2.14)

The operator ‘W in (2.8) is then represented by a column 2-vector, and ‘Wt in (2.9) by
a row 2-vector of integral kernels. Out of a function on the circle, W yields its wave
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synthesis:

Yx)=Wy°)(x) = [s dd W(x,3)y°(3), (2.15a)

k 1
V(. = .| ikx si . .
W(x, ) 1’2# (ik 05 B )exp(zkx sin 3) (2.15b)

Wave analysis of the Helmholtz solution is provided by W,

(9 = (Wiw)(9) = f(“ dx WH(3, x)¥ (x), (2.16a)
wh(g,x) = % ‘}%7‘ (cos 3, TIZ) exp(—ikxsin ). (2.16b)

Wave analysis and synthesis are the Helmholtz analogues of the direct and inverse common
Fourier transform.

Remark 2.2. We use the literal x € R for the position coordinate one a one-dimensional
optical screen. In geometric optics for a homogeneous medium of unit refractive index, the
variable p = sin ¢ € [—1, 1] that appeared in the proof of Theorem 2.2 is the canonically
conjugate momentum coordinate.

Remark 2.3. It may seem that one can choose the two initial functions, (x) and ¢'(x),
freely. But this is not so, because these are functions built out of Fourier synthesis of waves
whose wavenumbers measured on the screen (x-axis) are |k sin 3| < k, i.e., their spectrum
is compact and the component wavelengths are bounded from below by 27 /k. Gaussian
beams are very much used in Fourier optics; yet an initial field profile = exp(—x2/2w) of
width w on the screen does not stem from a solution of the Helmholtz equation, because
the Fourier transform of such a function is another Gaussian in wavenumber k of width
1/w, whose support is not bounded.

Example 2.1. When the function on the circle S is the Dirac & distribution,
6.(9) = 6(9 — a), (2.17a)

then the corresponding Helmholtz solutions is a plane wave whose normal forms an angle
a with the y-axis

B Aalx) B |k exp(ikx sin )
Aal) = (A;(.r) ) = W) o Vg(ik cos a exp(ikx sin a))' (2.17b)

Notice the obliquity factor cos a of the normal derivative; it changes sign beyond
a = :—;-'rr, i.e., for ‘backward’ rays.

Example 2.2. When the functions on the circle S are the circular harmonics

1
vo(8) = Jz—ﬂcxp imd, m=0=*1,%2,..., (2.18a)

the corresponding Helmholtz solutions are

Y,,,(x)) k' (=1)"J  (kx)
= (2.18b)

Yn(x) = (Yl (x)

J.(kx) |,
.k3/2 _1 m+1vYm
ik"*m(—1) -
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where J,,(z) = (=1)"J-.(z) is the Bessel function of integer order m. .
The correspondence between circular harmonics and Bessel functions under the

Helmholtz wave transform means that if we know the Fourier synthesis coefficients
{Umlmez (Z is the set of integers) of the function ¢° € Fs,

Yo(9) = Z Yme'™?, (2.192)
mGZ
then the corresponding Helmholtz initial functions will be given by the series
Jm(kx) '
¥(x) = z (=" I k) |- (2.19b)
T mez - lkm-—k—x—

Example 2.3. The wave transforms of the two basic trigonometric functions are

SRS ., 00+ (1" Valk)
cosmd = —(v2 + v, )(8) —»V2mk ,  (2.20a)
2 1 Im (L )
tkm—-[l - (-D)"]7——

L0 = (=)W k)

sinmd = —(v0 — v, )(8) SVITE| 2 . (2.20b)
2" 1 (L )
= km?[l + ( l) ]
In particular,
Jo(kx) y 0
152 , cos & > ikv2mk | J(kx) |- (2.20c, d)
kx

That is, the constant function over the circle corresponds to a superposition of waves from
all directions with the same amplitude and phase that add up to a Jo Bessel function on the
screen and have zero normal derivative; if a superposition of waves is made wuh a cosine
amplitude distribution (subtracting backward waves from forward ones) and a 2 + 7 phase,
we obtain the zero Helmholtz solution whose normal derivative is a J;(£)/£-function.

Example 2.4. The inverse wave transforms of the sinus cardinalis function sinc z =
z~'sin z, wisely used in sampling theory is, for each component,

1 & w [ sinc kx
9(8) = —|— , (2.21a)
& (9) 5 \ka lcos 3| — ( o )
1 o v 0
1 19 S e [atts s (2-2"))
4 2 2k ik (sinc kx)

where we recall that o = sign cos 9.

Remark 2.4. If we are required to work with real Helmholtz solutions ¥ (x), from the
above equations we can see the restrictions imposed on the corresponding wave spectral
function °(:3). Indeed, consider the trigonometric Fourier expansion of the latter, in sine
and cosine functions, with coefficients that have a real and imaginary part. Consider first
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real coefficients, from (2.20) we see that for the Helmholtz solution (x) to be real, no
sin m?9 terms with m odd should be present—for m even, the factor %[l - (—-D™
is zero, and for the normal derivative ¢'(x) to be real, no cos md terms with m odd
should appear. That is, for ¥(x) to be real, the real part of °(%) should contain no odd
harmonics. A similar argument shows that the imaginary part of ¢°(¢) must not contain
the even harmonics. A real °() that is of even parity under the reflection ¥ «— —9
of the circle will synthesize an acceptably real Helmholtz initial function ¥(x) that is
even under x « —x screen reflection. The initial conditions ¢(x) real and ¢'(x) =0
correspond to Ry °(3) = 0 and F¢°(F) odd. Finally, ¢(x) = 0 and ¢'(x) real imply that
Ny°(I9) is even and FyY° (I = 0).
From (2.3) comes the following corollary.

Corollary 2.1. When a solution (x,y) of the Helmholtz equation corresponds to a
function over the circle Y°(), and the space is translated in x by x and in'y by 7, the
translated solution and initial values will correspond to the same °(3), only multiplied
by phases:

V(x — x) " ¢7(9) exp(—Jjk x sin ) @22
(X, y)ymy
ay(x.y) 25 0°(9) expikn cos 9). (2.22b)
ay y=n

lll. HELMHOLTZ HILBERT SPACE

The natural sesquilinear inner product of two Lebesgue square-integrable functions on the
circle,

(W°, ¢°)s = fs do y°(9) $°(9), G.1)

defines the well known Hilbert space £ 2(S). The wave transform W maps this space of
functions on a space of pairs of functions (initial values of Helmholtz solutions) that we
call Helmholtz space, H,, for fixed k. Its definition is

H, = {¥IWiw e £3(S5)}]. (3.2)

The inner product in £ 2(S) induces an inner product in JH; with the following interesting
property.

Theorem 3.1. The Helmholtz space H is a Hilbert space of functions with the nonlocal
inner product

(‘I’.d))}[k = fx dx N dx' V1 H, (x — x"P ('), (3.3a)
) L[ ki 0 -
Hilx — £} = -4—( 0 k= olk(x — x’)))’ (3.30)
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where W1(x) is the row vector of two-functions that is transpose conjugate to ¥ (x). This

inner product is definite, i.e, for the induced norm |¥ |3, = (¥, ¥) s, |¥ls, = 0 and
I‘PI}(‘ =0 ¥ =0

Proof. To find the integral measure in (3.3), we replace the integral vector forms of
the wave transform in (2.16) into the £ 2(S) inner product (3.1),

(Y°,¢°)s = j;_ dﬂ[[m dx Wm(ﬂ,x)‘lf]'r [.[91 dx' W”’(z?,x')<l>(x')]

= f‘“ dx [m dx'qr(x)*[[s do w(”(a,x)*w“’(a.x’)]d>(x’). (3.4a)

The sought measure will be thus

k. cos? — cos U

H,(x — x) [ déd —l ik 1 exp(ik(x — x)sind).  (3.4b)
— cos ¢ —
k2

Due to the parity properties commented in Remark 2.3, we can use the standard integral
_ ' nﬂ(f)
f d9 cos"d exp(iésin ) = 2m(n — D=0 &t n even, (3.4¢)
S 0, n odd,
wherem!! = (m = 2)!', 1" = 0", = l,and (- 1)!! = —1. Whenn = 0, 1, 2, the expres-

sion (3.3b) for the measure follows. Since the Helmholtz wave transform is based on the
Fourier transform, it is a unitary transformation between £ 2(S) and the Hilbert space F;.
This is their Parseval relation. Q.E.D.

The inner product (3.3) is nonlocal but is homogeneous and isotropic, i.e., it integrates
over the range of the two functions, of x and x’, but weights the product by functions of
their absolute mutual distance, £ = k|x — x'|. These functions are the Bessel functions
J1(£€)/ € and Jo(€), shown in Fig. 1. They are real, even, and centrally peaked; the second

FIG. 1. Bessel functions Jo(£), J,(£)/€. and /7 sinc &.
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is narrower than the first (see Remark 3.3, below). Their first simple zero appears at £ =
Jia = 383171 ... and jo,, = 2.40482 ... ; although the functions change sign at their
simple zeros, having negative values every other interval, the integral over growing |£|-
intervals remains positive; as a measu~z, H;(|x = x'|)dx dx' is positive definite. Finally,
their asymptotic behavior at |£] — o is ~ £ cos(¢ — ) and ~ £ 12 cos(¢ — 2m),
respectively, with a common factor of /2/7.

The Helmholtz Hilbert space excludes functions that are not initial values of oscillatory
Helmholtz solutions. If we propose a “bad” function outside FH, say exp(iKx) with
K > k for the first and/or second components, and place it in the integral (3.3a) in
company with any other function, then performing the first integration with the measure
functions yields zero. This is so because the integral is the Fourier transform of a function
of compact support valuated where it is zero [cf. (3.4¢)]. Therefore, “bad” functions are
automatically orthogonal to the “good™ solutions of the Helmholtz equation when we use
the Helmholtz inner product, and their norm is zero. A complete orthonormal basis for
the Hilbert space FH; is the set of harmonic functions {Y,(x)}.ez in (2.18b), because
they are the wave transforms of the well-known circular function basis of £ 2(S) given in
(2.18a); a Dirac basis is provided by the plane waves (2.17). The application of the wave
analysis and synthesis operators W W1 to arbitrary (integrable) functions, projects to
zero the complement subspace whose wavenumber exceeds k. Only on the space F; of
solutions of the Helmholtz equation, W is the right inverse of the wave transform W.

The action of operator W o W1 as projector is shown in Fig. 2, applied on a
discontinuous function which is not symmetric about the origin. Its wave analysis finds the
part of the spectrum with wavenumbers less than k; subsequent wave synthesis produces a
solution of the Helmholtz equation, a low-pass filtered and aliased version of the original,
its HH,-content. See Appendix A for the discretized algorithm that generated the figures.

The Helmholtz norm ¥ |3, = (¥, ¥);, measures an intrinsic quantity of the solution
field ¢(x,y) of the Helmholtz equation because it is independent of the placement of the
measurement screen—up to now the y = 0 line: if we translate or rotate the line in the
x-y plane we get the same numerical result. This is contained in the following theorem.

1 AAAAAA/\

AN l[\¥

“o] Vi 5 V:i'x

FIG. 2. An “arbitrary” function (composed of straight segments) under the action of the projection
operator W W that turns it into the closest initial value for a Helmholtz solution corresponding
to the wavenumber k = 2, or wavelength A = 1. Notice the Gibbs-like oscillations (aliasing) in
the neighborhood of the discontinuities with the characteristic wavelength A = 1.
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Theorem 3.2. The Helmholtz inner product (3.3) is invariant under Euclidean transfor-
mations of the plane.

Proof. From (2.21), translations of ¢(x,y) correspond to multiplication of ¢°(3¥) by
phases. Rotations by 7 correspond to a translation in the argument to ¢°(3 — 7). These
are invariances of the L£2(S) inner product (3.1). The result follows for (3.3) from the
Parseval relation. Q.E.D.

Remark 3.1. The inner product (3.3) was found by Steinberg and Wolf [4] searching
for Euclidean invariants among general sesquilinear products. That construction process
shows it is the only Euclidean invariant inner product. '

Remark 3.2. The Helmholtz norm given by the sesquilinear form (3.3) is similar to
the energy in a homogenous isotropic vibrating lattice or medium, of a disturbance
f(x,1) and its time den:vali\.'e f(x,y). In this mechanical case, the energy has the form
E= %(f, Vf) + 5 (f,Mf), with a nondiagonal interaction operator V, a (diagonal)
mass operator M, and (f, f) a local inner product (with single integration over x). The
difference with the Helmholtz case is, of course, that the latter is invariant under two space
translations and rotations. Moreover, the normal derivative of a Helmholtz solution is in
a space direction, rather than in the time direction, where the M-term is kinetic energy. It
is, thus, quite natural to have in the Helmholtz case a “‘mass” term that is not diagonal.

We can construct the reproducing kernel for the space FH; out of the complete
orthonormal basis {Y ,(x)}mez in (2.18b). It is a 2 X 2 matrix function K, (x) = K(y,x)
such that for every ¥(x) € F,,

(Ky. W), = ¥lx). 3.5)

The reproducing kernel is the limit of the sum
K(x,x) = D Yn()Ya(0)'

mezZ
Ik
kd (K y )T (kx) ik*m ( ")J,,,(kx)
-2 Salk) 2Tl Jatk) G ea)
mEZ | —ik2m),,(k,) Tl Il o
kx Ky kx
Bessel functions satisfy convolution sums such as [5]
D JnemlEMn(£) = Ju(& — &), (3.6b)
meEZ

and the recursion relation mJ,(£)/¢ = 5[Jn+1(£) + Jm-1(£)]. From here follows
kJo(k(x = x)) 0
K(y,x) = 0 k31‘(k(x - X)) |. (3.7
k(x = x)
Thus, in H; the reproducing kernel is a well-behaved analytic diagonal matrix function.

To verify that (3.7) has indeed the stated reproducing kernel property (3.5), we note that
the inner product with integral on & = kx is

(Ko W)y, = 5 [ 46 [ a' K (Omul - )W(E). (3.80)
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This contains, in each of the two components, the integral

1

—f d€ Jo( € - X)Jl(f) . f dpexpiyp = lsmx, (3.8b)

£ 2 =1 T X

for €=y — ¢ and ¥ = y — £'. To prove the first equality, we may use (3.4c)
for both Bessel functions to find, after exchanging the integrals, the standard Fourier
representation of §(sin & — sin ') = |cos 9178 — 9) + 8(3 — (m — I))] inside
the double circle integral. This eliminates one of the integrals; in the remaining integration
we change variables to p = sin ¢. In both the components of (K,,¥) 5, we are left
with an integral of the form

2—7; dff dp F(¢')exp(i(y — &')p) = \/——f dpF(p)expixp = F(x),

(3.8¢)

with F = ¢ or ¢, because the Fourier transform F(p) of initial values of solutions of
the Helmholtz equation has support only on & € [—1,1].

Remark 3.3. The reproducing kernel in the Hilbert space of functions that are Fourier
transforms of L 2(—k, k) functions, is the well-known sinus cardinalis function

_ lsink(x—x) _ 1 . oy Dk = x)
L,(x) = Y ) W sinc k(x — y) N (3.9)

This is an even function with a positive central peak and its two first zeros at x =
*xw/k = t-;—/\. Compare this with the Helmholtz space HHj, whose reproducing kernel
is a diagonal 2 X 2 matrix with functions Jo(kx) and (kx)~'J,(kx), and whose first simple
zeros appear at x = *2.40482/k =~ *0.38274A and x = *3.83171/k = *0.60983A,
respectively. The widths of the Helmholtz reproducing kernel functions thus bracket the
width of the Fourier sinc reproducing kernel. Applied to monochromatic light waves,
this statement is germane to the relation between Helmholtz and Fourier optics [6]; in
this and other properties [2], the value of a quantity in Fourier optics falls within the
corresponding pair of values in Helmholtz optics.

IV. APPROXIMATION OF HELMHOLTZ SOLUTIONS

The classical orthogonal projection theorem [7] for Hilbert spaces allows us to find the
unique solution to the Helmholtz interpolation problem.

Theorem 4.1. Consider the Helmholtz Hilbert space HH; with inner product (¥, ®) 4,
given by (3.3) and reproducing kernel K(x,x) given by (3.7). Assume that a field ¥(x)
has been sampled at N points on the screen x),x,,...,xy, yielding numerical values
vi = ¢(x)),...., vy = Y(xy) for the amplitudes and vy = §'(x,),..., vl = ¢'(xy) for the
normal derivatives. Then there exists a unique interpolating function IV € H, such that
norm is minimal

"‘I’,(D 'y = i f (D’¢ ’ 4.
( )2 0‘236( )34, (4.1a)

and such that it reproduces the data values

(K(x;, ), I¥), (Vf). j=1,....N. (4.1b)
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This II'¥ (x) is an oscillatory Helmholtz solution and is given explicitly by

My (x) v [ vikJo(k(x; = x))
Nnv(x) = (Htﬁ'(x)) = ; A;k3J'(k(xj -x)) |, 4.2)

k(x] - X)

where the coefficients {A; }f.l and {/\;}7_| are the solutions of the following two nonsingular
linear N X N systems of equations:

1 Joléy = &) . Jol&1 = En) Ay Vi
" Jo(&2 :— 1) 1 Jo(é2 :' én) /\:2 _ v:2 43a)
Ity = &) Ty = &) o | A vy
[ 1 Ji(¢ — &) Ji(¢1 — én)
2 & — & TR EH=E ! s
Ji(& — &) ll_ ’ J:(éz - gN) ﬁi :i
Bl =& 2 B e 2 . =] - (4.3b)
Jl(fN:" £1) Jn(f;v:" £2) A L Ak v
\ & — & Ev— & T 2 /

where §; = kx;.
The interpolant obtained by (4.2) will be called the Helmholtz interpolant. This is the
unique norm-minimizing function that satisfies the interpolation conditions.

The two matrices, obtained from the reproducing kernel diagonal matrix elements, are
symmetric, diagonal-peaked matrices that are invertible, and their determinant is nonzero
for any finite N. From a computational point of view, however, for a large number of data
points, they can be numerically ill-conditioned.

According to Gershgorin’s theorem, if a matrix has all diagonal elements of the same
order, and these elements are large compared with the off-diagonal ones, then the matrix has
a small condition number [8]. It is evident that the matrices (4.3a) and (4.3b) satisfy the first
condition. Regarding the second condition, we see that the elements of these two matrices
satisfy |M; ;| > |M; ;| fori,j = 1,...,N and, as we noted before, the asymptotic behavior
of the elements is Jo(£) ~ O(£7'2) and J,(£¢)/€ ~ O(£737). The condition number of
Gershgorin’s theorem gives an estimate of the numerical accuracy of the matrix inversion
by calculating the determinant (indicated by ||-]|), » = |IM]| [IM~!||. which according to
the above remarks we expect to be good.

As a graphical example, in Fig. 3 we show the Helmholtz interpolant for N = 11
sensors on a linear grid of points equally spaced by € = £; — £+ = 1, i.e., one reduced
wavelength measured on the screen: x; — x;4; = e/k = eA/2w, extending between
x; = —NA/2m and xoy+1 = NA/27. The values were obtained from the projection of the
rectangle function on the Helmholtz space through "W o ‘W1 as discussed in Section III.

Two lines are shown: one for data representing the field value, and one for data representing
the normal derivatives at the screen.
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FIG. 3. A sample of 11 data points (taken from a Helmholtz initial value) is used to obtain
the Helmholtz interpolant for wavenumber k = 27 (wavelength A = 1). The continuous line
interpolates data as initial values of the Helmholtz field solution, and the dotted line interpolates
the data as representing the normal derivative.

V. CONCLUDING REMARKS

We have presented Helmholtz wave analysis and synthesis, found the associated Helmholtz
Hilbert space with the nonlocal inner product of Theorem 3.1 and shown the solution to
the corresponding interpolation problem in Theorem 4.1. Since Eq. (4.3) for the expansion
coefficients require the inversion of N X N numerical matrices, we should compare
these results with the simpler and common wave synthesis of classical optical sampling
interpolation theory [6]; the latter expands in displaced sinus cardinalis functions,

u(x) u(.rj) ) :
(u’(x)) ,; (u’(xj) sinc k(x — x;), (5.1
treating the solution values on the screen and their normal derivatives on the screen as
two totally independent functions. In (5.1), the matrices to be inverted in the finite-N case
(according to the analogue of Theorem 4.1) are diagonal when the xjs are placed 7/k
apart, i.e., at a Nyquist sample. Their computation is less expensive.

Our aim is this work has been not only to interpolate the initial values (x) and ¢'(x),
but also to approximate in the best possible way the full solution (x, y) of a Helmholtz
wavefield thus determined by the initial data at sampling points x; (that need not be a
Nyquist sample). This we do through two operations:

a. Once the interpolated initial two-function II'W¥(x) has been obtained through the
formulas (4.1)-(4.3) of Theorem 4.1, we perform the wave analysis (2.9)-(2.16) to
find the approximate [Ty °(«3) = (WHITW) (), this is translated in y by (2.22b)
into H:p;(:?) = [T¢°(9) exp(iky cos 3).

b. Then we perform wave synthesis (2.8)-(2.15) to finally obtain the interpolated
2-dimensional wavefield ITy(x,y) = (WIIy;) (x).

Although there are many Hilbert spaces of functions whose Fourier transform is of
compact support, which can provide interpolant functions for discrete data values, the
interpolant (4.2) that we present in this article minimizes the norm (3.3) that we interpret
as field energy. As pointed out in Remark 3.1, it is the only sesquilinear form that is
invariant under Euclidean transformations. Consequently, any other inner product that we
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may use to interpolate the initial values will produce different approximations to the two-
dimensional Helmholtz solution ¢(x, y) depending on the translation and rotation of the
screen. Only ITy¢(x,y) is independent of the placement of our line of sensors.

We thank Drs. Alejandro Frank, Frangois Leyvraz, and W. Luis Mochdn (ICN and
IF, UNAM/Cuernavaca) for many helpful comments, and to Qufm. Guillermo Krotzsch
(IIMAS UNAM) for essential support with computation and figures.

APPENDIX A. DISCRETIZATION FOR COMPUTATION

The wave analysis and synthesis (2.15)-(2.16) are integral transforms with a kernel
exp(ik sin 9). There seem to be few elementary functions with exactly integrable wave
transforms besides those already given in the text. Numerical integration methods are
needed for the task of studying examples and interpreting data.

The graphs to be generated come from a “data” two-function W2 (x) (not necessarily
Helmbholtz initial values and normal derivatives on the screen), its wave analysis ¢ °(3)
(that filters out wavelengths smaller than 27/k), and the latter’s wave synthesis W(x),
which is an initial value of a solution of the Helmholtz equation for a fixed &, or wavelength

= 27 /k. Figure 2 was computed through a simple numerical algorithm in FORTRAN,
whose limiting assumption is that the “significant” part of the data function is within a
symmetric finite interval [—L, L]. If so, then the integral over x € [—L,L] in (2.15) is
approximated by a sum over the 2N + 1 equidistant points

L L
Xp = W(m -N-1), m=12,...,2N + 1, spaced by Ax = N’ (A.1)

which include xy+; = 0 and the endpoints. The integral over ¢ € S is approximated by
a similar sum over 2N + 1 equidistant points on the circle

2 ) o 2
ON + 1(1 N-1), j=12,..,2N +1, spacedby Ad = TR

(A.2)
which include 95,, = 0Oand end in *(mw — 3 A 9). For continuous functions F(x) and
F°(9), the approximations of the integrals are

19]"—'-‘

2N +1 T AN +1
f dx F(x) > > AxF(x,), / d9F°(9) > Y A9 F(9)). (A.3)

m=1 j=1
For a fixed wavelength A = 27 /k, the discretized wave analysis projector is, thus, a

map from ¥2(x,,) = (zz,((t:))) = (i:g,) to y°(9;) = ¢

L [k & , . sign(cos 9;) _ .,
T P A O ST, (3 —_ 1 ). '4
¥ = o - > | |cos 9| W2 + = V2 lexp(—ikx,sin 9;). (A4)

m=]

The discretized wave synthesis is then the map from ¢; to a “good” approximation of a
Helmholtz solution, with “significant” support in [—L, L] that is a two-function

Y(x,) = (\Ir ) amk 2"5‘:1 ] (zkcl )exp(:kxm sin 9;). (A.5)

j=1

v/ IN + 1 0s I,
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