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Received 14 March 1994, in final form 27 May 1994 

Abstract. The geometric and dynamic postulates for 
rays in inhomogeneous optical media lead succinctly 
to the two Hamilton equations in regions u,here the 
inhomogeneity is smooth, at a surface of discontinuity 
between two smooth media, they lead to two 
conservation laws. One of these is the Ibn Sahl 
(-Snell-Descartes) law of finite refraction. The 
transformation due to finite reiractioo can be in 
general factorized into two simpler root transformations. 
These conclusions apply for mechanical as well as optical 
systems. 

1. Introduction and purpose 

Modem mathematical physics has taught us to 
distinguish between the geometric and dynamic 
foundations of evolving systems. In this vein, we 
propose two fundamental postulates for the 
lines that represent light rays in classical optics. In 
regions where the medium is smoothly inhomo- 
geneous, the two Hamilton equations result. On 
surfaces where the medium has a finite dis- 
continuity. conservation laws apply, of which 
one has been known as Snell's law [l]. Recent 
historical research [2], however, shows that the 
law of refraction was clearly known to Abti SaCd 
al-'Al<' Ibn Sahl before the year 984. Apart 
from reflection--known to the Greeks-refraction 
is probably the oldest dynamic law formulated for 
Nature. 

In section 2 we present a pair of geometric 
and dynamic postulates for the geometric optics 
model of light phenomena. Theoretical models 
of physical phenomena are based on 'self-evident' 
mathematical statements, as mathematical theories 
are based on axioms. Geometric optics-like 
point-particle mechanics-is one of several models 

*Work under support of Project DGAPA IN 1042 93, 
Universidad Nacional Aut6noma de MCxico. 

Resumen. Los postulados geomktricos y dinamicos para 10s 
rayos en medios bpticos inhomogheos llevan sucintamente 
a las dos ecuaciones de Hamilton en regiones donde la 
inhomogeneidad es suave; sobre la super6cie de 
discontinuidad entre dos medios suaves, Uevan a dos leyes 
de conservaci6n. Una de ellas es la ley de Ibn Sahl (-Sncll- 
Descartes) sobre refraccibn finita. La transformaci6n debida 
a la refracci6n debida a la refraccih puede en general 
factorizarse en dos transformaciones rair que son mas 
sencillas. Estas mnclusioues se aplican a sistemas tanto 
mdnicos mmo 6pticos. 

of optical phenomena, particularly useful for 
instrument design. It renounces ab inizio to explain 
polarization, interference, or quantum coherence 
effects, in the same way that Newtonian mechanics 
explains a world with no relativity or  quantum 
problems. 

We propose as self-evident two postulates for 
the lines in space that model the classical optic 
rays, and write the formulae in incremental form, 
for small, 6nite distances on the lines. In this 
way, letting the increment vanish, we obtain the 
two Hamilton evolution equations for general 
inhomogeneous, but smooth optical media. If the 
medium has a finite discontinuity across a (smooth) 
surface, the incremental form leads to two conserva- 
tion laws in refraction, one being the 'Snell' law of 
sines-or 'SneU-Descartes' as it is sometimes 
known. Ibn Saws paternity of the law is briefly 
discussed. 

Section 3 distinguishes optical rays from point- 
particle trajectories by an additional postulate 
regarding the physical interpretation of the time 
parameter. The Hamilton equations establish a cor- 
respondence between optical media with smooth 
refractive indices and smooth mechanical potentials. 
Section 4 follows this correspondence for h i t e  
refraction in optics and point-particle fall over 
potential steps in mechanics. It has been proven 
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Figure 1. A light ray is a piecewise differential line q ( s ) ,  
s E CR. With tangent in the direction p ( s ) .  

in 131 that the transformation of rays due to a 
refracting surface between two homogeneous 
media can be decomposed into a product of two 
root transformations, each factor containing the 
parameters of a single medium. The derivation of 
this property, as it appears in 141, is generalized 
for an arbitrary finite discontinuity between smooth 
inhomogeneous media. The root transformation 
has been particularly useful for symbolic computer We write this postulate in incremental form with the 
aberration calculations, as we remark in the gradient vector Vn(q)  as 
concluding section. A p  = On(q)As (2.Ib) 

see figure 2. Addition of constants to n does not 
2. Posiulaies and equations change the effect of the medium on the ray, but 

the relation above establishes a scale between the 
Geometric optics treats light rays as lines in three change of p and the change of n over the trajectory 
space dimensions. We describe a line by a 3-vector interval As. This equation recalls a 'force' acting 
of functions q(.e) = (4.~(s),4,(s),q~(s))T, of the along the gradient of a 'potential'; both words are 
length along the ray s E %. (To save text space, we in quotes because they are borrowed from 
indicate column vectors as the transpose (T) of row mechanics. The intuition they convey is right, 
vectors.) however, except that we have not been speaking of 

time but of length s, and not of a mechanical 
Geometric postulate. The rays q(s) are continuous potential but of the refractive index n(q)  of an 
and piecewise differentiable. optical medium. In the next section we shall see that 

these postulates describe both optical and mechanical 
That is, the line q(s)  is  connected and has a tangent trajectories. 
vector p ( s )  = ( p ~ s ) ,  p&), ~ ~ ( s ) ) ~  for s E 3, except 
possibly at isolated points wherep(s) may he discon- 2.1. Hamilton equations 
tinuous. We state this postulate in the incremental In regions where the refractive index "(4) is smooth, 

in the limit A s  + 0 the two basic incremental form shown in figure 1, 

Figure 2. The space gradient of the refractive index 
changes the ray tangent Bs it pBsses through an 
inhomogeneous region. 

Aq= -Ax P ( 2 . 1 ~ )  equations (2.1) imply the vector equations 
IPI 

We do not (yet) restrict the length of the tangent _ = _  dq P ( 2 . 2 )  

dP M q )  (2.26) 

These are the first and second Hamilton equations, 
respectively (in the parameter s). Their structure 
determines that there will he an invariant AS (the 
Hamiltonian function 151) such that aS/ap equals 
( 2 . 2 ~ )  and -aAS/ay equals (2.26). Indeed, this is 

vector. ds / P I  
The dynamic postulate is a statement on how light 

rays bend in inhomogeneous media described by a 
function of space nfq). We consider n(q)  to he region- 
wise smooth, with gradient vector (that is zero where 
n is constant), except possibly at surfaces (with well- 
defined normal vector) where n can have a finite 
discontinuity. 

Dynamic postulate. The tangent vector p ( s )  responds 

_ = _  
ds aq 

to the space gradient of the function n(q). .F = / P I  - n ( d .  (2.3) 

... ~ ~~~~~~~~ ~~ 
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It is constant along each ray because it is independent 
of s: 

dJI" aYf d9 8 2  dp -=-.- +-.- 
ds a9 ds ap ds 

We choose henceforth the value W = 0 because 
it leads to simplified formulae and a particularly 
transparent restriction for the norm of the tangent 
vector p ,  that is then constrained to lie on a sphere 

IPI = "(9).  (2.5) 

This has been called the Descurtes sphere, by 
inspiration from the figures he drew in [6]. 

The case of free flight in a homogeneous medium, 
n = constant, is found from (2.26) and ( 2 . 2 ~ )  as the 
basic solution 

q(s)  = 9(O) + sp/n 

P b )  = P(0) .  

(n  constant) 
(2.6) 

When the medium is smoothly inhomogeneous, the 
Hamilton equations yield solutions of the general 
form and properties 

2.2. Finite refraction 
When the refractive index 4 9 )  has a finite dis- 
continuity at a surface S(q)  = 0 between the ray 
points 9(s) and 9(s+ As), where the tangents are 
p ( s )  and p(.v + A s ) ,  we may let As + 0 approaching 
the point at S from both sides. We indicate the 
variables at s+ As by primes, so in (3.44, 
A9 = q' - 9 -t 0. Meanwhile, A p  = p' - p remains 
finite in media n = n(q)  and n' = n(d). The gradient 
of 4 9 )  defined through the incremental limit 
A9 -t 0 yields the vector normal to the surface 
C = Vn(q)lsAs, which remains finite as As + 0; 
thus in (2.16) we conclude that A p  is parallel to C 
at the point of incidence. Hence, in the limit, the 
two equations can be written as conserwtion iuws 
for the ray at the surface S, 

91s = 41s (2.8u) 

c x PIS = c xp'ls,  (2.86) 

T'he Erst equation is again a statement of con- 
tinuity !or the line at the refracting surface. The 

Figure 3. Ibn Sahl's diagram for refraction. A ray 
incident on a surface wilh normal E has direction p; the 
increment Ap is parallel to E. The refracted ray has 
direction p' such that the ratio of vector lengths Ip /  and 
/p ' [  is the ratio of the refractive indices, njn'. The 
common right side of the two triangles is the conserved 
quantity. 

second equation is the dynamic: if 0 and 8' are the 
angles between E and the vectors p and p', recalling 
from (2.5) that IpI = n and lp'l = n'], the norm of 
(2.86) is the well known sine law of Ibn Sahl, Snell 
and Descartes 

n sin 8 = n' sin 8'. (2.9) 

The three vectors are coplanar. Note that, had we 
chosen the Hamiltonian (2.3) to be 2 = E ,  a non- 
zero constant, the coefiicients in front of the two 
sides of (2.9) would be IpI = n+ E and 
lp'l = n' + E, and this would redefine the physical 
refractive index by that additive constant. 

Figure 3 shows the beautiful and simple diagram 
used by Ibn Sahl in his treatise On Burning 
Instruments to find the optical properties of plano- 
convex or biconvex hyperboloidal lenses that can 
concentrate the light of the Sun or of near light 
sources, respectively. The manuscript book of Ibn 
Sahl was known to his disciples and followers [2], 
but its pages were eventually disassembled, part of 
them ending in Damascus, part in Tehran, and part 
were lost. Their reconstruction earned Professor 
Roshdi Rashed the 1991 Third World Academy of 
Sciences prize. We feel obliged to put a new 
name to the sine law of refraction that was written 
some 650 years before Wildebrord Snell found it 
experimentally [l, 71, and Reni Descartes by 
contrived (and incorrect) theoretical reasoning. Ibn 
Sahl's diagram is drawn with the surface normal C 
and the incident r ay  tangent vector p at an angle 8; 
this defines a right triangle with a hypothenuse 
whose length one sets to n.  Then one builds a second 
right triangle with the side other than E in common 
with the Erst triangle, and whose hypothenuse is of 
length n'. The law of sines (2.9) writes the length of 
the common side in two ways. We should underlie 
that Ibn Saws diagram does not draw the rays 
themselves, but their directions ut the point of 
incidence. 
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3. Time and mechanics 

The incremental fonns of the geometric and dynamic 
postulates were presented in general terms, drawing 
on the intuitive meaning they have in classical 
optics; in fact, they apply equally well to mechanics 
as they do to optics. The distinction between the 
two physical systems stems from a third, physical 
postulate that states the relation between length 
intervals As and time intervals At .  

The Newtonian velocity of a light point in a 
medium follows the optical posrulnte: 

C As = -Ar. (3.la) 

where c is the reference velocity of light in vacuum, 
and the refractive index n ranges from 1 (for 
vacuum) up to 2.4 (for diamond). The velocity has 
thus finite upper and lower bounds. 

On the other hand, a mechanical point of mass m 
obeys the mechanical postulate: 

A s  =-At. IPI (3.lb) 

In classical mechanics the velocity of the particle, 
dq/dr keeps the k e d  proportion m with IpI; it may 
be zero and is unbounded The vector 
p = mass x velocity is called the momentum of the 
object. We can use the same name for it also in 
optics. 

For mechanical systems, the incremental equations 
(2,1), under the substitution (3. lb), become 

"(4)  

m 

(3.2a) 

(3.26) 

The Hamilton equations for time evolution are 
obtained upon letting Ar- 0. They have the 
familiar form 

(3.3a) 

(3.36) 

with the well known mechanical Hamiltonian 
invariant 

obtained from integration of the last equality 
in (3.36) with respect to q, recalling (2.9, and 
provided 

n2(q)  = 2m(E - Y(q)) .  (3.5) 

The number E is constant in time and known as 
the energy of the trajectory q(r). The function V(q)  
is the mechanical potential function. For fned 
E, the mechanical momentum p is constrained to the 
sphere 

IPI = - W). ( 3 4  

This we may call the Newton sphere, vis-&vis the 
optical Descartes sphere. 

In this way, the refractive index of an optical 
system is related to the potential of a corresponding 
mechanical system at a fixed energy, and vice versa 
brovided that l<n$2.4). A dense optical region 
(for example, a 'Gaussian' refractive index 
n = 1 + exp(-lq12/2w)) will bend light rays in the 
same way as free particle trajectories of a given 
energy are bent by a smooth potential trough 
V = E - n2/2m.  

Common optical media such as lens systems 
have surfaces of discontinuity in the refractive index. 
The related mechanical systems are square-well 
potential walls along the same surfaces. Finite 
mechanical refraction then occurs with the con- 
servation of two quantities: of position q in (2.8a), 
stating that the particle trajectory is continuous in 
time, and of momentum p in (2.86), in obeyance to 
the Ibn Sahl law. Time is clearly the appropriate 
independent (evolution) parameter for systems 
that follow the mechanical postulate (3.lb); if the 
particle stops somewhere along its trajectory, the 
Hamiltonian equations (3.3)-(3.4) still hold, while 
(2.2) would have a discontinuity. 

4. Factorization of refraction 

The presence of a surface of discontinuity S(q) = 0 
between two media of refractive indices n(q) and 
n'(q) = n(q') produces a finite transformation 

of the ray trajectories (2.7), that we write 
as 

( 4 . l a )  

for 'initial points' s = 0 of both rays. See figure 4. 
We shall now show that this transformation 

factorizes into two roof factors % in the following 
way: 

Each root factor depends only on one of the media 
and the shape of the surface S .  This will be done 
first in full generality and then particularized for two 
homogeneous media, simplifying the results reported 
in [3], 141 and [SI. 

Let the point of impact of a ray q(s) on the surface 
S(q) = 0 be at the value S of the ray length parameter 
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of the existence of the inverse of a root 
transformation because i t  is canonical [3, 9]), the 
general factorization result (4.lh) follows. This 
result is general; it holds for optics and for 
mechanics. 

To show the practical advantage of the root 
transformation as an intermediate step in computing 
the effect of a refracting surface, we consider the case 
of a surface separating two homogeneous median and 
n‘. We introduce Cartesian coordinates in space. We 
distinguish the z-axis and assume that 

the surface S(q) = 0 is written as c(qxr q,,) - q; = 0. 

(4.5) 

We use boldface for the two-vectors with the x- and 
y-components of q. p. and E: 

q=(:) q = ( ; )  (4 .6~)  

Flgure 4. Refraction is a factarizable transformation 
between the initial points of the incident ( 4 . p )  and 
refracted rays (q ’ ,p ’ )  lying on a reference plane. 

s. Then, using the notation of equations (2.7) in the 
medium n(q), assume that 

S(Q(qo,po,9)) = 0  solves for s= K(qo,po;S) .  
2 2  2 .=( i f )  p = ( : : )  p z = n  -IpI 

(4.2a) (4.6h) 

(4 .6~)  

Bars will be used to denote quantities at the surface 
S,  and primes for quantities in the second medium, 
as before. The s = 0 ‘origin’ of the rays will be 
placed at  the z = 0 plane, that we consider as a 
reference screen, so qoz = 0; we drop the 0 subscript 
henceforth understanding that we refer to that 
screen. 

The first equality in equation (4 .3~)  now becomes 

(4.7a) 

(4.7h) 

There may be rays whose initial conditions qo. po aciaq, 
are more such than that one they point; miss we the surface, disregard or these cross cases it at  E=(:,) r=(a(/aq.). 
assuming the solution is unique. Similarly, in the 
second medinm n ~ ( q )  we indicate functions and 
quantities by primes, so that 

S(Q’(qb,pb,J)) = 0  solves for s=S(qb,pb;S) 
(4.2h) 

with the same surface S and value of 9. Then, we 
write the conservation laws (2.8) in the form 

Q(qo3p09f) = Q = Q’(d ,~b , . ‘ )  
q + Spln = 4. 
qz + SpJn = q:. 

(4.3a) 

El0 x P(qo,po,S) = P = Cl0 x P(qb,pb,S) (4.3h) 

where Q is the point of impact, Cl.0 is the vector 
normal to the surface S at that point, and P is a 
fixed vector. 

The structure of these two conservation laws 
interprets the barred point-of-impact quantities in 
the middle terms as the result of transformation of 
the initial values qo. po (by propagation through S) 
in the left-hand side, and sets them equal to a 
similar transformation (propagation by the same 9 

From the last equation, 

f = (% - qi)nlpI = C(q)n/pz (4.8) 

is the s-coordinate of the point of impact (i.e., the 
solution of the general equations (4.2)). This is now 
replaced into the first two component equations 
(cf (4.3a)), to yield 

(4.90) 4 
W”,S : q = 4 = q +1(4)-. 

in the second medium) of the values 46, pb. PZ 
That is, 

(4.40) 
%s : { (4.4b) 

Comparing this with (4.10) (and being assured 

This is thefirst root equation to solve for q(q,p) .  

from (4.3h), and will be shown to he 

W.;, : p = p  = p  + X(Y)P,. 

% The second root equation to he solved second stems 
= {: =%s : {  $lo xPh, CIQ x PO 

(4.9h) 

~ ~ . ~ -  ~ ~ ~~ 
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When one or both of the two media n and n' is not 
homogeneous (but still differentiable), then the main 
problem becomes the analytic or series-expanded 
computation of the path in those media. This is 
possible, for example, when the medium is an optical 
fibre whose refractive index is independent of the 
z-coordinate and of the form n(q) = U p qy 
[I  11. Such a medium yields to easy solutlon because it 
is vis-&vis the mechanical harmonic oscillator. 

7 

Indeed, this is an explicit equation that depends on 
the result @(q; c(q)) of the lint. To prove (4.96) for 
homogeneous media, the quantity indicated P for 
the general case (4.3b) is put in -the form 
P = C x p + 6C,  for some fixed vector C and con- 
stant 6.  For simplicity we choose 2 to be the unit 
normal to a z=constant plane. Then, equation 
(4.36) becomes, in components, 

= ((I,) (:) + (:) 

From the first two components follows (4.96). The 
third component is not independent (cf (4.66)). 

The first root equation ( 4 . 9 ~ )  may be the most 
difficult part of the cask of finding the effect of 
refraction: only for planes S(q) - k . q, paraboloids - 19)*, cubic and quartic surfaces does this equation 
solve in closed form; in general it is an implicit 
equation that depends on the shape of the surface S 
through c(q). Yet it is a simple kind of implicit 
equation, of the form cj = q +f . (c j ,p) ,  rather than 
the more difficult coupled pair of equations of the 
form g"(9,p)  = gd(q',p'), that we would encounter 
if we attempted to solve refraction withour factoriza- 
tion. Indeed, the simpler implicit form of the root 
equations is very well suited for aberration 
expansions, i.e., Taylor expansions of 9'(q,p; (), 
p r ( 9 , p ; c ) ,  and <(q) in powers of the components of 
q and p [3, 91. Note that when the surface S is a 
z = constant plane, the root transformation is 
nothing but free fight (2.6). The second root 
equation (4.9b) is also well suited for aberration 
expansions of j (q ,p ;c ) .  It can he handled by 
relatively straightforward symbolic computation 

The next step is to find the inverse root transforma- 

5?;.Is : 9' = @ - <(cj)p'/p: (4 .11~)  

&,& : p ' = j - q q ) p : .  (4.11b) 

Here, the second equation must be solved first; it is 
an implicit equation whose solution yields 
p'(#, j ; ,C) .  The result is then replaced in (4,11a), that 
is explicit, and gives 9'(&j;<) .  Finally? we must com- 
pose the two transformations replacing the argu- 
ments of (4.11) by those of (4.9). All calculations 
are well served by aberration expansions handled 
through symbolic computer algorithms [8, 91. 

algorithms [9, IO]. 

tion. This is 

5. Concluding remarks 

Geometric postulates are used often in quantum 
mechanics with the designation of symmetries. The 
dynamic properties of quantum systems are given 
by the polential in their Schrodinger equation. For 
some special systems, such as the hydrogen atom or 
the harmonic oscillator, the dynamics can be 
incorporated into a statement of dynamic symmetry. 
In other realms, such as elementary particle models, 
the potentials are not really known or do not exist, 
so postulating higher symmetries is common 
currency. Classical optics has lagged behind in this 
respect, in part because its dynamic law is known 
precisely-Ibn Sahl's law-and in part because 
it  is perceived as a different discipline, quite 
unrelated to mechanics. Where cross-breeding has 
occurred, such as in coherent and squeezed states of 
light, optical waveguides, paraxial wave optic 
systems, and the Maxwell fish-eye (the hydrogen 
atom of optics), the breed has been interesting and 
useful. 

The most distinctive feature of classical optical 
systems is the presence of sharp refracting inter- 
faces between media; these seldom appear in 
mechanics. Deriving both Hamilton evolution 
equations and finite refraction conservation laws 
from common incremental equations brings optics 
and mechanics conceptually closer. Describing 
mechanics with the same language as optics is an 
invitation to further apply the results of one on the 
otber. 
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