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The relativistic coma aberration of geometric optics was examined in the first paper [J. Math. 
Phys. 30, 2457 ( 1989) ]. Here is a study of a unitary realization of the Euclidean group, the 
dynamic group for global optics, on the space of solutions of the Helmholtz equation. 
Deformation to the Lorentz group of relativity yields the self-adjoint generators of boost 
transformations on that space. Graphic results for the action of a boost normal to the screen on 
an off-axis Gaussian beam, that may be compared with classical wave optics results on 
diffraction in aberration, are presented. 

I. INTRODUCTION 

In the first part of this work I we posed the well-known 
phenomenon of stellar aberration in the context of geometri­
cal Lie optics in phase space. 2 Given a relativistic distortion 
of ray directions on the sphere, we showed that the canoni­
cally conjugate ray positions undergo magnification and a 
circular coma tic aberration. This we called relativistic coma. 
The phenomenon was analyzed globally, i.e., on the full, 
proper phase space manifold of rays, and given in closed, 
explicit formulas, and also as an expansion in aberration up 
to seventh order. We pointed out that the basic dynamical 
group of optics is the Euclidean group,3 rather than the Hei­
senberg-Weyt,4 diamond,5 or Weyl-symplectic6 groups used 
in nonrelativistic quantum mechanics. The latter group ap­
pears as a contraction of the first in the paraxial approxima­
tion. 7 

The Euclidean ISO (3) group of rigid motions of three­
space was deformed 8.9 to relativistic SO( 3, 1) transforma­
tions. This provided stellar aberration for boosts on the ray 
directions of geometric optics. The spot diagrams were ob­
tained for the full direction sphere, with the standard coma­
tic appearance for boosts normal to the screen plane. For 
boosts in the screen plane, the aberration had the character­
istics of an astigmatism and curvature of field, along and 
normal to the boost. I The group realization we used was that 
of geometrical optics phase space. 

In this paper we apply the same construction to the same 
groups, but in the realization on the space of solutions of the 
Helmholtz equation studied in Ref. 10. Geometric optics has 
no time variable; the Helmholtz equation does not contain it 
either. The space of solutionsf of 

(a; +a; +a; +k 2 )f(x,y,z) =0 (1.1) 

that are square integrable over any plane screen and whose 
spectrum there is bounded by k, is invariant under the Eu­
clidean group ISO (3) of screen translations and rotations, 
and we call it ~ k' For fEK k' written as a two-function 
column f(q) = (j(q),1z (q») on the plane q = (x,y), we can 
present the Helmholtz equation in the form 
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(f(q,z) ) 
\fz (q,z) 

( 1.2) 

where I:l.k = a; + a; + k 2. The formal solution may be 
written as an evolution of initial conditions: 

f(q,z) = exp(zH)f(q), (1.3 ) 

for f( q) and its normal derivative fz (q) at the reference 
screen z = 0 to all of !Ie . In ~ k , the initial value problem for 
the system is well posed. 10 As in geometrical optics, we work 
with observables and wavefunctions in the plane of a screen. 

We present the realization of the Euclidean group 
ISO (3) on ~ k in Sec. II, completed with respect to an inner 
product that is conserved under Euclidean transformations 
of the screen. We regard the ensuing unitary representation 
of the Euclidean group as defining the Helmholtz wavization 
of geometrical optics. In Sec. III we proceed to deform 
ISO(3) to the Lorentz groupSO(3,1) on~k' In Sec. IV we 
present the results for the z boost studied in Ref. 1 on an off­
center forward Gaussian beam. The explicit computation is 
done to fifth order in the relativistic boost parameter. The 
"isophotes" of 1 f(q) 12 are comparable to those seen and cal­
culated II for diffraction in third-order pure Seidel coma. 
The closing section presents some conclusions and open 
comments on nonlocality, observability, and the role of the 
normal derivativelz (q) of the field at the screen. 

II. THE EUCLIDEAN GROUP OF HELMHOLTZ WAVE 
OPTICS 

A well known realization of the generators of the Eu­
clidean algebra of translations and rotations on smooth 
functions o[!Je, is given by 

p~ = - i1l:ax ' P; = - i1l:ay , P; = - i1l:az , 

(2.la) 

R~ = i(yaz -zay ), R; = i(zax -xaz ), 

R; = i(x ay - y ax), (2.lb) 

where:kis a consant with units oflength, to render the opera­
tors dimensionless. The action of the corresponding Lie ex­
ponential group ISO (3) is that of ordinary, rigid transfor­
mations of !Ie. These operators are self-adjoint in ,2"2 (!IP) 

2463 J. Math. Phys. 30 (11), November 1989 0022-2488/89/112463-06$02.50 © 1989 American Institute of Physics 2463 

Downloaded 27 Jun 2011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



and their (i) exponential, i.e., exp(iajP j), exp(if3j R j), 
} = x,y,z, aE!Jt, is unitary. 

For functions in the solution space:Jt"k of the Helm­
holtz equation (1.1), we may replacelO az by the matrix op­
erator in (1.2), acting on two-functions f( q) = (f( q),fz (q») 
at the reference z = ° plane, and identify *with the reduced 
wavelength of (1.1), namely, *= A /2rr = 1/ k. This takes 
the place off! in quantum mechanics. In the Helmholtz real­
ization, the generators of translations become 

. (ax ° ) . (ay 0) Px = - ik a' Py = - ik a' ° x ° y (2.2a) 

Pz = - ik( _ °d
k 

~). 
As in geometrical optics, Pz takes the role of the Hamilto­
nian operator, generating z evolution in the system. The gen­
erators of rotations become 

-x) 
° ' (2.2b) 

Note that in the 2-1 elements of Rx and Ry there could be an 
ordering ambiguity between x,y, and d k • These elements are 
given by the anticommutator, !(x d k + dkx); that is the 
only possibility when we demand closure under commuta­
tion 

[Rx,Ry] = iRz' [Rx'Py] = iPz, (2.3 ) 
[Px,Py ] = 0, and cyclically. 

The ts above fit generators that are self-adjoint under an 
inner product. It is easy to see that an .,?2(!Jt2) product al­
lows for the self-adjointness of the diagonal matrix operators 
Px ' Py , and Rz , generators of the ISO(2) symmetry group 
of screen motions in its plane, but not for the z evolution Pz 

and the out-of-screen rotations R x and R y • 

In Ref. 10, Steinberg and Wolffound the (unique) Eu­
clidean-invariant inner product of solutions of the (well­
posed) Helmholtz equations in two dimensions, through 
proposing a nonlocal sesquilinear form. In the case of three 
dimensions, we have 

(f,g)w
k 

= i, d 2q i, d 2q'f(q)tMk(q,q')g(q'). (2.4a) 

The 2X2 matrix Mk(q,q') = IIM;,/(x,y,x',y')11 is deter­
mined by the requirement that the algebra operators Pj,R j , 

satisfy (f,Pjg);y k = (Pl,g);y k' etc. We find here 

Mk( ,)=(k}l(k1q-q'I)/lq-q'l ° ) 
q,q ° }o(klq-q'l) , 

(2.4b) 

where}o and}1 are the spherical Bessel functions. The form is 
positive definite on :Jt" k' Completion with respect to this 
inner product turns:Jt"k into a Hilbert space where the Eu­
clidean transformations are unitary. This realization we call 
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the Helmholtz representation ofISO (3). The Casimir invar­
iants are p 2 = P~ + P~ + P; = 1, and P·R = O. This 
means that we have a sphere for homogeneous space under 
the Euclidean algebra, its enveloping algebra, and the group; 
physically, it is a homogeneous space of unit refractive index. 
The SO (3) subgroup Casimir operator is diagonal (but not 
simply a multiple of the unit operator): 

R2 = R ~ + R ~ + R ; 

= (D(D + 10) + q2
k 2 ° ) 

(D + I)(D + 2) + q2k 2 ' 

(2.5) 

where 

D=xax +yay ' (2.6) 

The Helmholtz representation space :Jt" k has an inner 
product (2.4) that is nonlocal in the wave functionf(q) to 
the extent of}I(lql/k)/(lql/k), and in the normal deriva­
tive functionfz (q) to the extent of}o( Iql/-t), of the order of 
7t: Both fandfz contribute to the energy of an elastic medi­
um l2 so we may identify (f,f)r

k 
with total field energy on 

the screen. As we shall show below, this inner product may 
be brought to local form in an appropriate transform space. 
Finally, it seems we should identify If(q) 12 with the visible 
image illumination. 

The Euclidean algebra and its covering have been used 
by Vilenkin 13 and Miller l4 to find all separable solutions of 
the Helmholtz equation (1.1). The algebra itself yields the 
three subalgebra bases of Cartesian, cylindrical, and spheri­
cal coordinates; the corresponding separated functions are 
plane waves, the nondiffracting J m beams of Durnin et al., 15 

and multipole solutions. The covering algebra provides the 
rest of the 11 coordinate system where the equation sepa­
rates. Let us draw attention here to the plane-wave general­
ized eigenbasis of the translation subalgebra Px ,Py , and a 
sign (of Pz ). Up to an arbitrary normalization constant K, 

with units of (illumination/area) 1/2, 

<I> =~(I)ej(xkx+YkY) (2.7) 
kx,kY''' 2rr ikz 

is a plane wave on the screen, labeled by the respective di­
mensionless eigenvalues, -kkx, iky, and ae{ - 1,0, + 1} 

(kz = a~k2 - k~ - k~). The manifold of plane waves 
(kx,ky,a) is that of two disks {j~, of radius k, sown at the 
edge of 1ft. This is the sphere of ordinary plane-wave direc­
tion three-vectors, projected on its equatorial screen plane. 
Solutions in:Jt"k may be written as a generalized linear com­
bination of these basis functions, 

(2.8) 

We refer to the ordinary two-dimensional Fourier transform 
to write explicitly 

fz(q) =iK:k 2 r d 2kkz rJ+ (k) -J_(k)]e'k•
q

• 

Jot 
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Now, replacing (2.9) in the convoluted inner product 
(2.4), we exchange integrals and note that the q-Fourier 
transform of kjl (k Iql )/lql is kz' and that ofjo(k Iql) is lIkz 
on ot-, and zero outside. We may thus write the Parseval 
relation between (2.4) and the local form on one disk Ok' 

(f,g),yk = 21T11Vt1 2 
( d2k~ [/+(k)*g+(k) 

Jc5k k z 

+f_(k)*g_(k)]. (2.10) 

This is a local integration over the wave-vector sphere pro­
jected on the screen plane, including both forward ( + ) and 
backward (-) waves, with the obliquity factor 
k Ikz = sec e, where e is the angle between the wave three­
vector and the normal to the screen. The 2'2(9"e) norm 
majorizes the:Jrk norm. 

The Euclidean group has thus a geometrical optics mod­
el and a Helmholtz optics model. The generators of the Abe­
lian translation ideal of the abstract Lie algebra, P x' Py ' and 
Pz , are in geometrical optics the optical momenta and the 

Hamiltonianpx, Py' andpz = h =~I_lpI2 (for unit re­
fractive index); the Lie bracket is the Poisson bracket. In 
Helmholtz wave optics, the homomorphic realization of this 
subalgebra is given by (2.3a) acting on:Jr k described above, 
and the Lie bracket is the commutator. 

III. THE DEFORMATION OF THE EUCLIDEAN TO THE 
LORENTZ GROUP 

Out of the Helmholtz representation of the Euclidean 
algebra (2.2)-(2.4) we may construct a representation of 
the Lorentz algebra through deformation. The deformation 
extends to the corresponding groups. The generators of the 
SO (3,1) Lorentz group are the following: the SO (3) genera­
tors are those of the Euclidean group Rx, Ry, and R z in 
(2.2b); the boosts are built as Bj = [R 2,Pj ] + (7+ i)Pj , 

j = x,y,z. This formula is the heart of the deformation pro-
cess; 16 For real 7, the boost generators are self-adjoint in 
:Jr k' and belong to the nonexceptional continuous represen­
tation series. As in Ref. I, we set 7 = 0 on the grounds that 
this parameter only reflects an admixture of translations to 
the basic boost transformation. 

We build the following explicit boost matrix operators: 

Bx = RzPy - RyPz + iPx 

=:K(D+I)oax +k
2

x ° ) 
(D + 2)a

x 
+.k 2X ' (3.la) 

-k( ° D+ I) 
- -(D+2).:lk+k 2 0 . 

(3.1c) 

We may verify that these indeed close into the Lie algebra of 
the SO (3,1) group: 

2465 

[Rx,Ry] = iRz' [Rx,By] = iBz' 

[Bx,By] = - iRz' and cyclically. 
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(3.2) 

The Lorentz Casimir invariants are B 2 - R 2 = 1 [for arbi­
trary T it would be (7 + 1 )21], and B·R = O. 

In most applications of Lie theory-including geomet­
ric optics I-the algebra generators are functions of some 
variable(s) t, times a first-order differential operator in t, 
that we write a(1) for short. These lead to point-to-point 
transformations exp(ia a(l) jct) = M' (t;a». Barg­
mann8 deformed the Euclidean algebra with a (I) plus a (0)_ 

functions of t; this leads to multiplier representations of the 
group as exp(ia[a(1) + a (0)]) j(t) =.u(t;a)M'(t;a». 
The multiplier function.u just offsets the change in the mea­
sure at I at' so that the generators be Hermitian; when tech­
nical conditions on the domain hold, they are self-adjoint. 8 

The exponentiation ofsecond- 17
,18 and higher-order l9 differ­

ential operators leads in general to integral transforms: 
exp(iaa<;;>2) )j(t) =Sdt' K(t,t';a)j(t'). The particular 
case of paraxial scalar wave optics20 is well studied and re­
quires of a (0), a (I), and a (2); it leads to the canonical integral 
transforms. 6. 18 

Of the boost generators (3.1), Bx and By are matrices 
with elements a (0) + a (l) + a (2) on the diagonal, whileBz has 
a (0) + a (l) and a (0) + a (l) + a (2) + a (3) on the antidiagonal. 
They seem to be more difficult to exponentiate in closed 
form than they were in Ref. I, and here we do not attempt to 
do so. We can state, however, that because of the homomor­
phism of transformations of ray momenta in geometric op­
tics and plane-wave vectors under SO(3,1), the latter will 
behave in the same way as the former [viz., Ref. I, Eq. 
(4.6) ], conforming to the distortion of directions character­
istics of stellar aberration, namely, 

tan ~el-+ tan ~e ' = e - a tan ~e, (3.3 ) 

where e,e'E[O,1T] are the angles between the rays or wave 
vectors and the direction of the boost to velocity 
v = c tanh a. We now examine the effect of these unitary 
transformations on the screen images for the case of boosts in 
the z direction. 

IV. THE COMA ABERRATION IN z BOOSTS 

We consider boosts in the direction normal to the 
screen. The antidiagonal matrix elements of Bz in (3.1c) 
may be written in terms of formal Schrodinger operators 
[o,/(q) = qj'(q) , P/(q) = - ilt aqJ(q) , j = x,y, distin­
guished in sans serif font] in the following way: 

g; =7C'(D+ I) = io,·P +7C'= i(p·q)Q = 2iX~, (4.la) 

g> =7C'[k 2 
- (D+ 2).:lk] 

= ik 2 [0,. pp2 - 0,. P - 2btP2 + i7C'] 

= ik 2 [(p2p•q )Q - (p.q)Q] = ik 2(xi - 2X ~). 
( 4.1b) 

In these expressions, g; and g> are written in terms of stan­
dard ordered operators (derivatives to the right), and in 
terms of the [2'2(!R2)-Hermitian] operators that quantize, 
a la Schrodinger (Q), the classical observables p.q and p2poq, 
namely, X~ = ~(poq)Q and xi = (p2poq )Q' We recall that 
the quantization of functions of the general form A(p)q 
+ B(p) to 2'2-Hermitian operators is (modulo weak tech-
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nical assumptions) independent of the scheme (Weyl, 
Bom-J ordan, symmetrization, etc.). 4 The operator X 6 gen­
erates 'y2(9l2)-unitary dilatations on functions of position 
and, since p2p.q generates the geometrical Seidel coma aber­
ration, X i will be the coma operator. The indices reflect the 
placement oftheX's within the symplectic aberration multi­
plets classified in Ref. 3, and the results on their quantization 
in Ref. 21. Note that the off-diagonal operator It' is a combi­
nation of magnification and coma with the same order in a. 
[The exponentiation of the boost generators in the plane of 
the screen, Bx and By entails exponentiating the diagonal 
elements 9V + kq = kQ - (p.q)QP and 
V9 + kq = kQ - P(p·q)Q.] 

The effect of a finite boost in the z direction on wave 
functions on the screen and their normal derivatives may be 
written formally in terms of the operators y2 = 9 It' and 
f12 = It' 9 [see (3.5)], as 

(
/(a) ) . (0 
fz (a) = exp la It' 

9)(/(0) ) 
o fz (0) 

= ( cos aY ia9 sinc af1) (/(0) ) 
ialt' sinc aY cos af1 fz (0) 

(4.2a) 

where only even powers of Y and f1 appear in the cosine 
and sinc functions [sinc x = x - I sin x = 1 
- (l/3!)x2 + (l/5!)x4 

- "']. The expansion of the ma­
trix to fifth order in a is 

( 
1 - (1I2!)a2 9 It' + (1I4!)a4 9 It' 9 It' + ... 

ialt' - i(l/3!)a3 1t'91t' + i(l/5!)asIt'91t'91t' + .. . 
ia9 -i(1I3!)a391t'9 +i(l/5!)as91t'91t'9 + ... ) 

1 - (l/2!)a2 1t' 9 + (1I4!)a4 1t' 9 It' 9 + ... . 
(4.2b) 

In order to present concrete results comparable with 
other developments in Fourier aberration optics,22 we apply 
this expansion to a forward Gaussian beam with waist at the 
screen plane and centered at q = a. This we write as 

G: (q) = C~) Ew (q - a), Ew (q) = exp( - IqI2/2w). 

(4.3 ) 

Of course, a Gaussian is not strictly in Yt" k' since its Fourier 
transform is a Gaussian (in k) of width lIw, that has gener­
ally small but nonzero support outside the disk Ok' We as­
sume that the spread of directions off the + z axis is small, so 
that the approximation holds good and that we may replace 
the obliquity factor kz in the normal derivative by the con­
stant k in (4.3). Gaussians beams in the - z direction re­
verse the sign of the second component, i.e., complex conju­
gate (4.3). (A null second component would indicate it is a 
solution even in z, with maximum amplitude at the screen. ) 

Equation (4.2b) gives the effect of a z boost as a series of 
derivative operators that is straightforward to apply to the 
Gaussian (4.3) algorithmically through symbolic computa­
tion, albeit the approximation errors of the assumption that 
are not easy to estimate except by examining the stability of 
the main features of the graphic outcome. The series for the 
amplitude/is 
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/~.a(q) = (l-ak9 - (l/2!)a29 It' + (1I3!)a3k91t'9 

+ (1I4!)a491t'91t' - (1I5!)ask91t'91t'9 

+ .. ')Ew(q - a). (4.4) 

We recall that 9 and It' are real derivative operators; when 
acting on Gaussian functions they yield polynomial factors 
of degrees 2 and 4, respectively. The summands in (4.4) thus 
yield polynomials of degrees 0, 2, 6, 8, 12, and 14 in x and y, 
followed by degrees 18, 20, 24, ... , that we disregard on ac­
count of the power of a of the approximation. 

To first order in a, (4.2b) and (4.4) represent magnifi­
cation /-+/ + iafz + ... by the normal derivative. The fac­
tor polynomial of the Gaussian is 1 - a [1 - q' (q - a) ] . 

For a> 1I~1 + lal 2/4w this polynominal vanishes on a cir­
cle with center at q = ~a, and radius ~la12/4 + w(l - lIa); 

the radius grows with a bounded by~lal2/4 + w. To second 
order in a, the operator It', containing coma, appears in 
product with a 9, acting on the wave function. Two 9's 
with an It' appear for third order in a acting on the normal 
derivative, and so forth. 

In Fig. 1 we show the squared first component of a for­
ward Gaussian beam. In units of :kwe have placed the center 
of the Gaussian at the point a = (10,0). We have set the 
width of the Gaussian to be w = 4, so the squared amplitude 
drops to e- 1 = 0.3679... of its maximum value at 
Iq - al = 2. The conjugate wavenumber Gaussian has 
width ! and is thus comfortably concentrated within the 
Ikl = 1 disk. 

Figures 2 and 3 show the square of the resulting aberrat­
ed function on the screen, lf~.a (q) 12 for a = 0.3 and 
a = - 0.3. We have chosen these values so that the figures 
will be comparable with those of Ref. 1. The geometric coma 
caustic angle (60°) is superposed on the figures, with the 

FIG. 1. Contours of the square of the amplitude of a reference Gaussian 
placed at X. The width is w = 4k2 (we mark the Iq - al = 2 distance at 
which the function drops to e- I = 0.3679 ... of its maximum). The optical 
center is IOktothe left of X; the vertical line stands atx = 5k. We have used 
20 "isophote" contours spaced by 0.05, from 0.0 (hence not shown in the 
figure) to 1.0 (marked by X). 
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FIG. 2. The relativistic coma-aberrated forward Gaussian of Fig. I, for 
a = + 0.3 (v = c tanh a). We indicate the apex and the opening 60' -caus­
tic angle of the geometric Seidel coma image. 

apex at ea a (13.5 and 7.408 units from the optical center for 
a = ± 0.3). The figures were drawn after evaluating the 
polynomial factor in the series (4.4) to fifth degree in a for 
the above parameter values. They show that the single Gaus­
sian peak unfolds into several local maxima, separated by 
crescent-shaped "dark fringes," whose number was seen to 
increase with the truncation degree of a in the series (4.4). 
The location of the global maxima (0.804 and 0.818 of the 
reference Gaussian maximum) changed only slowly from 
first degree on in the direction of magnification. New, 
smaller local maxima are added with increasing degree. 

We should compare these features to those calculated 
for diffraction in aberration under pure Seidel coma [Ref. 

FIG. 3. The relativistic-coma-aberrated Gaussian of Fig. I, for a = - 0.3. 
This is equivalent to a backward-directed Gaussian beam with positive a 
parameter. We indicate the geometric opening caustic angle for Seidel 
coma. 
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II, Figs. 9.6(a) and 9.6(b)]. Our Fig. 3 seems to conform 
better than Fig. 2 to the familiar pattern of fringes of pure 
coma, where crescents bend in the direction of the apex; 
however, for the parameters of the second figure, 
a = + 0.3, the first-degree term is magnification. As we saw 
above, this will introduce a circular dark fringe of radius 
nearly 4 with the center at (5,0). This fringe seems to be the 
dominant feature that keeps the higher-degree crescents 
bending toward the optical center over the coma bending of 
the same. We note that the crescents of Fig. 2 are slightly 
"stiffer" than those of Fig. 3; this may indicate that in the 
former, the purely comatic bending weakly counteracts the 
basic magnification bending. 

V. RECAPITULATION AND CONCLUDING REMARKS 

The quantization of a system on the level of its dynami­
cal group has been proposed in Refs. 23, among many others, 
providing self-adjoint representations on a space with a 
physical interpretation, such as the 2"2 (913

) Hilbert space of 
quantum wave functions. The dynamical group of optics in 
homogeneous media is the Euclidean group. The representa­
tions we have explored are that of directed lines through a 
screen in geometrical optics, and that of a two-functions on a 
reference plane in Helmholtz optics. Both remain homoge­
neous spaces under the deformation of the Euclidean to the 
Lorentz group. 

In this way, boosted screens are described on par with 
rotated or translated screens, and special relativity is 
brought in contact with geometric and Helmholtz optics, 
that prima facie had little to do with motion because they 
contain no time variable. Solutions of the two-dimensional 
Helmholtz equation have been subjected to the Lorentz 
group before,24 but we did not realize then that the Euclid­
ean group has a transparent optical interpretation. The 
group action is correct as far as the prediction of the familiar 
stellar aberration for ray directions and plane waves. The 
relativistic coma phenomenon is the "Fourier conjugate" of 
that distortion of the sphere. The quotation marks are to 
withold a precise definition that encompasses canonical con­
jugation in geometric optics, and integral transformation 
into the basis of the plane waves (2.7) by (2.8) in Helmholtz 
optics. 

Even more pressing than the question of a time variable, 
is the absence of a space variable, q, within the dynamical 
group. In geometric optics, q is the canonical conjugate to 
ray momentum, p, within the Heisenberg-Weyl algebra un­
der Poisson brackets. In Helmholtz wave optics, a position 
operator Of( q) = qf( q) is not self-adjoint in cW' k' and hence 
does not lead to a standard observable within the framework 
of wave mechanics. We see this as a welcome feature of our 
theory, since Dirac D's on the screen cannot be strictly pro­
duced. Sinc-type or Jo beams 15 may be the best approxima­
tions. Here, we have an inner product (2.4) that has a Bes­
sel-function nonlocality. Mathematically, this is Parseval 
equivalent to the presence of the obliquity factor k z / k in the 
plane-wave basis inner product (2.10). The obliquity factor 
must be there for geometric reasons. Bothf and fz should be 
present if the squared norm is to mean total field energy of 
the system. 
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In fact, in two-dimensional optics,25.6 where ray direc­
tions () range over a circle SI' the Fourier conjugate observ­
able will generate rotations of that circle, indicating that 
ilLd / d(} may be an appropriate position operator (cf. Ref. 4, 
Sec. V, for the conjugate problem of quantum mechanics on 
SI)' The spectrum of such an operator in ,2"2(SI) is discrete 
and equally spaced by it; consistent with the sampling 
theorem of Whittaker and Shannon.26 In the three-dimen­
sional case we have a direction sphere S2 (not a torus), so the 
identification of the traditional position operators with our 
rotation generators ;;Rx,;ltRy, could be appropriate in view 
of the paraxial contraction limit, where they commute. Al­
ternatively, the position observable in geometrical optics 
was written in Ref. 1, Eq. (4.5), as an algebraic function of 
the translation and boost operators, but the wave version of 
this relation is not obvious. The plane q of the figures, how­
ever intuitive as the screen where images form, still requires 
further understanding. This also applies to the role of the 
normal derivativelz that does not seem to be directly observ­
able on the screen, but could be inferred from the values of 
the field amplitude at two different locations near the screen. 

The endowment of a physical system with a Lie algebra­
ic structure allows the compact statement of a cornucopia of 
properties, such as polarization, separation of variables, 
classification of solutions, and transformations, Clebsch­
Gordon coupling, and aberration expansions-to mention 
the most obvious ones for the Euclidean groups. These will 
be developed elsewhere for optics and relativistic oscillator 
mechanics,27 going beyond the present description of scalar 
fields in homogeneous, empty space. 
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