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THE CLEBSCH-GORDAN COEFFICIENTS FOR THE COVERING
OF THE (2+ 1)-LORENTZ GROUP
IN THE PARABOLIC BASIS

Debabrata BASU* and Kurt Bernardo WOLF

Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional
Auténoma de México, Apartado Postal 20-726, México 20, DF, México

We report on work in which we build the generalized oscillator algebra, an SO (2,1) algebra of
second-order differential operators with a specified domain, realizing all self-adjoint irreducible
representations belonging to the discrete or the continuous series. The diagonal sub-
algebra of the direct sum of two such algebras leads to the definition of product and coupled
states, whose inner product provides the Clebsch-Gordan coefficients. These are obtained as
solutions to (multichart) Schrédinger equations for Pdschl-Teller potentials, which involve at
most Gauss hypergeometric functions 2F1.

1. Introduction

The Clebsch—-Gordan series and coeflicients for the noncompact semisimple
algebra so(2,1) =su(1,1) =sp(2,R) =sl(2,R) has been considered by a num-
ber of authors, among them Pukénszky'), Ferreti and Verde?), Holman and
Biedenharn®), and Mukunda and Radhakrishnan®). The last two references
treat the Clebsch-Gordan coefficients in the elliptic [so(2,1) Dso(2)] and
hyperbolic [so(2,1) Dso(1,1)] subalgebra bases. Here we treat the Clebsch-
Gordan coefficients in the parabolic [so(2,1) D iso(1)] basis. We claim that this
chain leads to the simplest method of solution and simplest final expressions.
It is unique in that the algebra realization, as shown in section 2, is of
up-to-second-order®) differential operators with specific common irreducible
domains. This realization exponentiates to a group of integral transforms®)
which have permitted a unified evaluation of all unitary irreducible represen-
tations of the group®). Section 3 presents the main points of the programme; the
details and list of results are given in ref. 7.

2. Operators and domains
Let us first introduce the set of so(2,1) generators as second-order differen-
tial operators, and specify their domain, so as to have the generalized

oscillator realization which belongs to the most general self-adjoint irreduci-
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ble representation of so(2,1). Consider the space ¥ ={—1,1} X R" of points

(o,r) where o €{—1,1} and r>0, and the space of functions LUF), of

elements f.(r)=f(o,r) with the natural inner product (f,g)=

S, Jo £, (nN*g,(r) dr. The label e will specify an so(2, 1)-irreducible subspace.
The algebra generators are, formally

st= (- gt B) = b e
I*=1or =~ J, (1b)
S N

Ji= 2( dr+2>’ e

where y = (2k — 1)*— 1/4eR. The Casimir operator built out of eqs. (1) is a
multiple q of the identity, with q = k(1 —k) = —y/4+3/16, and we identify k
with its homonymous Bargmann label of self-adjoint irreducible represen-
tations.

The operator J§ in £*(¥) has in general more than one self-adjoint exten-
sion; the nature of its family of extensions depends on y (or on k), but it is
fixed once a (possible) spectrum {u} is specified. It turns out that all so(2,1)
self-adjoint irreducible representation Jo-spectra are allowed; when the
eigenvalues are u = m + ¢, for a range of integers m, L) is the closure of
the span of the normalized functions

UE(o, 1) = =(0)* B0k + o) T =k + o)™ r W, (v, 2)

The spectrum of the two-chart operator J§ is equally spaced and £X¥) thus
defined serves as the common invariant domain for the three generators (1) of
the algebra. We shall denote the operators with this domain by J&*, where
a=01,2,+,—.

For 1/2<k, w =k, k+1,..., and recalling the k <> 1 — k equivalence, 1/2 <
k<1, w=1-k, 2—k,...,e=k mod 1, the discrete series of self-adjoint
irreducible representations, D7, are realized for k >0 (and with p < —p, the
Dy series). The functions in these spaces have a o = +1 support only (o = —1
support for D}). For k =(1+ik)/2, k=0, u =€ +an integer, —1/2<e<1/2
(excluding k =1/2, € =1/2) we have the nonexceptional continuous series
self-adjoint irreducible representations Cj while for 1/2<k <1, p =€ +in-
teger, |e| <1—k the exceptional continuous series of self-adjoint irreducible
representations C; are obtained.

Our favoured generator of the set (1) is J* whose generalized eigen-
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functions are
Urp(o, 1) = p'28,.8(r — p) = 8,.8(r* — 3p?) 3)

corresponding to the simple eigenvalue 37p’€ R, r€{-1,1}, pE R".

3. Product and coupled states

In order to construct the Clebsch-Gordan coefficients we consider two sets
of operators (1) in two independent variable sets {o;r;} where j = 1, 2 and build
the ‘coupled’ so(2, 1) generators

Jo=Ta+T8 a=0,1,2,+,—, e=e+emodl, ()

in a Hilbert space £ (%) X £.(¥). The representation realized by eq. (4) is
not irreducible. In fact, the coupled Casimir operator is

5. £2 5 g2 ) 3\’
Q—_J0+]|+]3—4|:O'|0'1(r|ar2 0'10"_1728’_‘>

— 1+ 103D = a1 + oroariird) + 1]. 5)

Product states d/f,‘fﬁf,,m (o1, n, o2, ry) are built as eigenstates of Q), Q) J)-
and Jo- with eigenvalues q,=k,(1—k)), q=ki(1—ky), 7p1/2 and 7p3/2,
respectively, and consist of products of two states given by eq. (3). Coupled
states ‘I’:_':;; (o1, 11, 02, rp) are built as eigenstates of Q, Qp), Q and J_ with
eigenvalues q,, g», q = k(1 — k) and 7p?/2, respectively. The last operator is, from
eq. (4), o,ri/2 + o,r3/2. It is thus convenient to introduce a reparametrization of
(o1, 11, 02, 12) In F 4y X Py into six charts (C; o, r, ) labelled by C:

(i) Polar charts C =P, for oy=*1=03. o==%1, ry=rcosb, r,=rsin 6,

re®”,6€l0, w/2].

(ii) Hyperbolic charts C = HZ for oy =*1=—0,, r,>ry: 0 = =1, r, = r cosh 6,
rp=rsinh 6, reR", § €[0, ).

(ii1) Hyperbolic charts C = HZ for oy=F1=—03, ri<r;: o = =1, r;=r sinh 6,
ro=rcoshf, reR", 6 €[0,»).

The eigenvalue equation for J_ thus implies that the coupled state has a
factor 8,.8(r*/2— p?*/2) (and has thus support on a line passing through three of
the six charts, times a 6-dependent function F{ (6). This last function is
found through an eigenvalue equation for Q in each chart C, which takes the
form of Pdschl-Teller potential Schrodinger equations:

5

— %+ vi sec?  + y; cosec? 0] Ff.(8)=(k — 1)*F{.(8), (6a)
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2
{— diei_ vi sech? 6 + y, cosech’ 9] Fl=(8)=— 2k — )*F{:(0), (6b)

{ = %ﬁ— vi cosech? @ — vy, sech’ 9} FE=(0)=— 2k — 1)’F{:(0). (6¢)
The solutions of egs. (6) in ZXF X F), € = €+ e2mod 1, are given in terms
of hypergeometric ,F, functions in 6, in each chart. Their proper nor-
malization over (a subset of one, two or three of) the six charts is the main
calculational problem which has been solved in ref. 7. From there, the
Clebsch-Gordan coefficients may be found through an inner product over
ot

cleke ki eky_ oyt

T Pls T3y p:; o) TP T2.027
= 8(3mp} + 17203 — 179 )(p1p) P Fi (arctrh(p,/p))), o

where trh = sin, sinh and cosh, in the C =P~, HZ and HZ charts, respec-
tively. The inner product (7) does not involve integration since the support of
the product state is on a single point in the %X ) space, lying in one of the
six charts seen above. The location of this support depends on the values of
1, 72, p1 and p,, and must fall on the line support of the coupled state. This
gives rise to the ‘magnetic number’ (1p*/2) selection rule embodied in the
Dirac 8-factors above. The general structure of the result takes the form

C<Elv k19 €2, kZ; €, k
T, P, T P25 TP

x pipiphFi(a, B; 8; £pilp?), j=1lor2, ®)

) = c8(mp}l2+ Tp3f2 — 70°12)

where C is the proper normalization constant, a, b, d, «, B and & depend
linearly on ki, ks, k, and the argument of the Gauss function is never on the
branch cut. The normalization process involves solving a sum of up to three
integrals in 6 which may be evaluated by a common method. The Clebsch-
Gordan series changes nontrivially for the D*x D", D" x D", DX C and
C x C cases; in the latter cases, discrete as well as continuous series of
self-adjoint irreducible representations appear in the decomposition and
mutual orthogonality must be verified or imposed. Details and results of this
calculation have been given in ref. 7.
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