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We examine the spectrum and cigenfunctions of the quantum harmonic oscillator
with a centritugal barrier and with a centripetal well. Three intervals in the centritu-
gal-centripctal strenght parameter range are relevant: in one the spectrum is unique,
lower-bound, and cqually-spaced, in the sccond it is lower-bound but not unique and
—except for two cascs— not equally spaced, while in the third it has neither of the
three propertics. An associated two-componcent Hamiltonian has a spectrum exhibit-
ing cqual spacing over the full parameter range.

L INTRODUCTION

Whether or not one regards quantum mechanics as a mathematically
cpmplete and definitive physical theory of microscopic Nature, it is truc
that it may yield answers to problems posed outside the realm of actual
‘physical systems. Most introductory books on the subject will present
and solve the one-dimensional square barrier square, square well, and the
qﬁantum harmonic oscillator among other idealized models, finding their
energy levels and their spacing patterns. The solution of eigenvalue equa-
tions with boundary and/or integrability conditions is required for solving
the common Schrodinger equation cigenvalue problem

_I__(I'_2+/, = ¥ 1.1
=3 i Vir)| ¥, (r) = 2u¥ ,(r) , (1.1

(where the mass and h are set equal to unity). In the rcal world, cnergy
spectra must always be bounded from below.
.+ To be sure, there is a wide mathematical literature on operator theory
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[1] which deals with gencral questions which assume very little on’th :

exact nature of F(r). Bound eigenstates, we know, should be square:
integrable so as to permit a probabilistic interpretation of the wavefun
tion. If the potential has certain types of singularities however, this ma‘y
be impossible, or it may not lead to a unique quantization of energy
levels. This latter situation is well understood by operator-theory spccxal-
ists, but it may be perplexing to resecarch workers in physics who have

the Hamiltonian is an clement. It tells us that the system possesses a dy- -
> namical algebra and group, which in turn makes it a study favourite for
geometrical quantization, special-function theory, and separation of vari-
.. ables. The dynamical algebra of this system is the three-dimensional
<" Lorentz algebra so(2, 1), and these lower-bound cqually-spaced spectra
correspond to the discrete-series representations [2]. The fact that the
never dealt with fringe-casc potentials. ) S - continuous series representations did not appear had becn a source of
The purpose of this ““Cl? is to examine one such case: the one-di- : puzzlement. These are recognized through equally-spaced unbounded
mensional half-harmonic oscillator [i.e . over R*= (0, )] with a y/r3 * spectra.
-singularity, namely ; . There are two main points to be made in this article. First, we cxamine
> the system in the said intervals as a problem in quantum mechanics, to
“show that the spectrum is not unique in v € (—oo, 3/4), and that this
ambiguity does not seem to be resolved by physics. Secondly, we shall
show how, through the consideration of two-component functions, the
s property of equal eigenvalue spacing is restored for all real values of .
Section II presents the Shrodinger equation and finds the square-inte-
grable solutions for v € R. Sec IIl and IV then examinc the cigenvalue
- problems, leaving for Sec V the “linearization™ of the eigenvalue spacing
for the v € (—eo, 3/4) class of cases. We offer some connections, in Sec VI,
~with current work which has used mathematical multicomponent opera-
tors which have an attractive quantum mechanical interpretation. The
appendix gives the group theoretic framework of our intcrest in this
problem, and settles thereby the phase convention for the wave functions.

V) = = (L+r)y, r>0

in (1.1), and to obtain the corresponding wavefunctions \I/u(r) and eigen-
values u for v positive as well as negative. We shall see that, in fact, a more
meaningful division of the range of the singularity coefficient 7 is in terms
of three intcrvals: a) |3/4, o), b) (— 1/4, 3/4), and c) (— oo, — [/4]. This
quantum system is rather well known for the first and second intervals,
when it corresponds to the radial part of a multidimensional isotropic
harmonic oscillator: it has a spectrum which is bounded from below, and
the eigenvalues are equally spaced. In the second interval (—1/4, 3/4),
however. depending on the function domain of the Schrodinger Ham
tonian operator, nonequally-spaced spectra, also bounded from below,:
may be produced. This phenomenon (i.e., the spectrum not being uni s
unless a domain is specified) is due to the mathematical fact that ther"e‘__is
a one-parameter family of self-adjoint extensions for the formal Hamil-
tonian operator. ) ;

The last interval (—es, —1/4] corresponds to a harmonic oscillator with

II. SQUARE-INTEGRABLE EIGENFUNCTIONS

The Schrodinger equation (1.1) for the potential (1.2) will be written as

a strong centripetal well at the origin. Such a system is physically un'ré‘al- HY (r) = 2u¥,(r) , (2.1a)
istic, of course. the quantum spectrum is not bounded from below. nor-is
it equally spaced, nor again is it unique, unless a definite self-adjoin i
extension is chosen through appropiate specification of the functio ] da?

sion i gh approp p =2 +L 4,2 (2.1b)
domain. 21742

The study of this particular example of a singular potential with th
properties would be only mildly interesting, were it not for the fact that
equal spacing of the eigenvalues is an extremely important feature fr m
the point of view of applied group theory. It tells us that raising an
lowering operators may be built and this leads to a Lie algebra of which’

wherc 2p is the energy eigenvalue used to label the corresponding cigen-
3 function ¥ (r). The asymptotic behaviour of the solutions may be ob-
tzined through the Liouville-Green method [3] (closely related to the
WKB method. it consists here in essentially disregarding v/r? and u as
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vanishing in comparison with rl’) which yiclds one solution bc.haying
r=t e 12 ynd another as r72 e 2 Clcarly, the former is squarg
integrable in (g, @), @ > 0, while the latter is unacceptable as a quantl_l__rp
wave function. ' B s
Equation (2.1) is a Fuchsian differential equation with .tw.o .sxnguq
points: a regular onc at the origin and an irregular one at infinity. lt\s
thus recognized as a confluent hypergeometric equation whose splunox}_ ;
are expressible —modulo changes of variables and multiplier functlons—;m_»;
terms of confluent hypergeometric functions |/ (a;c;x). Indeed, they.
may be put in terms of Whittaker functions of the ﬁrstand‘ second ty
M, (x) and W _, (x). The defining property of W, , (x) is to ﬁave an;;
exponentially vanishing behaviour at x = oo[4,5]. We may write the%
acceptable solutions of (2.1) as ‘i

B

\l/:(r) = Cﬁr'”zwu,k —1/2(r2)

where
the strenght v of the centrifigal potential, through

1ty +1/4)'"7),

r|—

y=(2k-D*-1/4,

ccometric functions [6]. 1t should be noticed that (2.2) and (2.3) are_'__’l
;';xri;\m under the exchange & ~ 1 — k. When Eq. (2.1) is obtained as ‘the
radial cquation for an N-dimensional harmonic oscillator with togl
ancular momentum £, then A = £/2+N/4 (2=0,1,2,...). In group$
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Y= 3/4 o k> | strong barrier interval . (2.4q)

~1/4 <y < 3/4 o 12 < k < | exceptional interval | (2.41)
YS = 1/4d e k= (1+ik)2 k=0 strong well interval . (2.4¢)

As stated before, the squarc-integrability of W* (r) on (a, ), 0<y < oo
is due to the asymptotic exponential decreasce o(ythc Whittaker function
W“ (x). The behaviour at the origin will determine whether or not \1': (r)
is an element of [2 (R*): i.e., the space of squarc-integrable functions on
the positive half-axis. This may be rcadily analyzed from the last expres-
sion in (2.2), since 117y (a;c;x) = 1 when x = 0. (We assume ¢ is not a
negative integer.)

Indeed,

) s
H r—0°*

F{ P = 20/T(1 — k = k2

+[D(2k - 1[Ik — w)r “**32) 5)

where it should be noted that the power behaviour does not depend on p,

but only on k. The function 7 is square-integrable on (0,a), 0 <a <o
when

a

f" drr’® = (2a+ 1)71 201 < oo,
0 0o -

ie., when Re(Qa+ 1) > 0, or Re @ > —1/2. The first summand in (2.5)
is thus in L?(R*) for Rek>0 while the second is in L2 (R*) for
Re & <'I. Hence, the strong-well and exceptional intervals (2.4b, ¢) pos-
sess L2 (R*)-solutions for all values of k and u. In the strono-barrier inter-
val (2.4a), however, the second term In (2.2) —(2.5) prevents its
square integrabiliy untess its coefticient vanishes. This happens when the -

_function in the denominator is evaluated at zcro or at a ncgative integer,
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eigenvalues are orthogonal [1, 8]. We have to examine. thus, the inner
products (\ll, . \l/k ) between the cu..cnfuncnons (2.2):if these are not zero
for some p # v, we must conclude that \ll and ¥* do rot belong to the
same self-adjunction domain of H. The sputrum of H will be given thus
by all u such that (\Pf/, \Ifﬁ)=0 for some fixed v, including v itsclf.
Whether or not the spectrum thus found is unique (i.c.. independent of the
choice of v) is a question to which most physicists in the habit of solving
physical quantum mechanical problems would answer yes. Perhaps so, but
we will show that, for a range of values of the parameter v in the model
Hamiltonian (2.1), the answer is no. This range includes [0, 3/4) which
would not ordinarily be regarded as manifestly unphysical.

ic.. for Kk —pu=-n,n=0,1,2, .. This fcaturc yiclds the quantizat16
ol the energy levels of the h.nrmomc oscillator with a strong barncr For-
later use. we examine the squarc-integrability of the derivative \Il of
(2.5) at r = 0%, simply substracting | from the exponents, and in the case
ol exponent zero, seeing that \I'ﬁ (0*%) is constant. The first summand in :
WA is thus in L2 (R*) for Re &> 1/2and & = 1/4, while the second sum-
mand has this property for Re k& < 1/2 and &= 3/4. The result is that
Hamiltonians in the strong-well interval have no L? (R*)-dcrivative
cicenfunctions, the strong-barrier interval has only L?* (R*)-derivative :
cicenfunctions, while for cach k in the exceptional interval (k # 3/4) it

has one such cigenfunction, i.c., that which is obtained when k — p= —m, :

or u=k+m m=0,1,2, .. for k=3/4 a second L?* (R )—dcnvatxve o . 11l THE HAMILTONIAN SPECTRA

cizenfunction exists when the ﬂrst term vanishes (i.c., when 1 — &k — p——m,

or u=1-—-k+m m=0,1,2,..). The casc k=1/2 will require further The inner product of two eigenfunctions \l' \I/ M FE v the same

operator / [Eqs. (1.1), (1.2) and (2.1)] may bc obtamcd as follows:
multiply (2.1) by ¥ (r)* and substract the same equation, complex con-
jugate, with g and ¥ exchanged. The result is

analysis.

only satisty I/\I' = 2uV for some fixed numeru in that sense, thc second
solution of (2.1) —obtained replacing in (2.2) the M, -functions for the
W, , ones—isas good as the first one. Squarc-integrability becomes impor-
tant when we want to define a domain, a space of functions where A may
be self-adjoint and there possess a spectrum. If the spectrum consists only
of (an infinite number of) isolated points —a point spectrum— then the
" cicenfunctions will provide a denumerable basis for the domain. Self-"
adjointness of operators is required by the standard Dirac-von Neumann
[8] formulation of quantum mechanics, if these are to be associated with
physical observables, and the Hamiltonian /A of a system is certainly one.
The concept of adjunction of operators is defined when an inner product
in the domain is given. The usual sesquilinear inner product in configura-
tion space is the Lebesgue integral of the product of two functions (the
lirst complex conjugate) over the range of the functions:

*
d% (A () = wh (v, G

to | —

(11— V)V V() = -

where we recall that the eigenvalues are real. Now integrate over R*
obtain the inner product (2.6) and express the right-hand member in
terms of the Wronskian W(f, g,) =fg' -- /g valuated at the interval end-
points

(W5, W) = (200 = WO Vo0l (3.2)

‘Since the W’s given in (2.2) vanish at r=> o, we need only evaluate the
Wronskian in the zero limit. Since taking derivatives and the » = 0% limit
may be done here in either order here, the result (2.5) may be used.
Among the three intervals presented in the last section, consider first
the interval &> 1/2 [cases (2.4a) and (2.4b)]. Whenever both v=%k + n
and u=k +m, n,m=0,1, 2, ..., the functions \1/" and \l/k have the same
behaviour 7**¥ = 72 near the ongm [c:fi; in Eq. (2. 5)] SO [hur Wronskian
is zero at r=0, and hence the two functions are orthogonal. The same

(fig) = f = dr fin* g(r)
0 1

In terms of this inner product A is self-adjoint when (f, Hg)—(HTf g)
= (Hf. g) and when the domain of 4T is equal to the domain of H. The
mathematically rigourous proof of the latter condition is not easy, but
the tormer one is constructive and rather direct for Hamiltonians (2.1b).:
A well-known consequence of the former condition is that the spectrum
of the operator is real. and that cigenfunctions corresponding to different
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situation occurs in the interval 1/2 <k <1 [case (2.4b)] when bot
v=]l—k+nand u=1—-k+m n, m=0,1, 2, ... The results are thus
that:

a) For k=1 the only square-integrable eigenfunctions of the harmonic
oscillator Hamiltonian with a strong (¥ = 3/4) centrifugal barrier are the
\Pﬁ (r) given by the first summand in (2.2). (Normalization will be done in
the next section.) The cnergy spectrum is unique:

p=kk+ L k+2, . (3.32)

It is bounded trom below and equally spaced. .

b) for 1/2 <k <1, there ecxists a sct of square-integrable function
\Pﬁ(r), which vanish at the origin, with squarc-integrable derivative, also
given by the first summand in (2.2), whose encrgy spectrum is (3.3a).
There also cexists a sccond set of eigenfunctions, given by the second
summand in (2.2),whosc energy spectrum is

.

u=1-k2—k 3=k .., (3.3b)

also bounded from below and equally spaced. For 1/2 <k <3/4 they
vanish at the origin, while for k = 3/4 the derivative vanishes there. With
the exception of the case k = 3/4, the derivative of thesc eigenfunctions is
not squarc-integrable. [As will be shown later, the value A= 1/2 may be
included in this casc. (3.3a) and (3.3b) being the same. ]

The cigenfunction set associated to the spectrum (3.3a) is not ortho-
vonal to the eigenset associated to (3.3b): the first one behaves near the

origin as r2* = "tand the second as r 2% * 372 From (2.5) we find

Tl — 22k = 1)
Tl — 2k —m(2k = 1 —m)

WP e W) = = 22k - 1) (3.4)

IR

which is different from zero for 1/2 <k <'I. The spectrum of H, hence,
may not be the union of two spectra. For k= 3/4, i.e., (2.1) withy=0,
we note, we have a “half-harmonic oscillator”. The eigenfunction set
(3.32) is the sct of odd oscillator eigenstates which vanish at the origin,
witile (3.3b) is the set of even states whose derivative vanishes there. These
_are orthogonal on [? (R) due to parity, but not on L? (R*).
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When v < 3/4 [cases (b) and (c)], we saw that both summands in (2.2)--
(2.5) are square-integrable, so the condition (3.3) need not be imposed on
the exceptional interval, nor can they be imposed in the strong-well case
since u is real while k is not.

In those cases we may directly evaluate the Wronksian in (3.2) at the
r= 0% limit using (2.5). The algebra differs somewhat for &* = k and for
k* =1 — k, but the final result is valid for both and can be written as

W(\I/f., \I/f) = rf.cf m csc (27k)

r =0

X ATk =)l =k =] = [I(1 =k - )k — )]} (3.5)

Barring for the moment the special case &= 1/2, the right hand side will
be zero only for p's such that :

Ik — w) F'k—v)

fiw) = T —%— ) = I -k<9) = constant. (3.0)

We may now pose concretely iiie question raised at the end of the last sec-
tion, namely: given one fixed ¥ which we thus impose to be a point in the
spectrum of A, which other u’s will belong to it so that the corresponding
‘I’ﬁ 's are orthogonal to \Pf? Since for this set of u's f, (1) in (3.0) has the
same constant value, the set of ¥'s - including \Jlﬁ— will be an ortho-
gonal set of vectors, in effect an eigenbasis of H where it has spectrum
{1} As a continuation to point (b) above, we thus consider

b') For 1/2<k<1, [ (1) is a real function, it has simple poles at the
point (3.3a). zeros at the points (3.3b), and is monotonically decreasing
between any two poles, as shown in figure 1. A choice of v yiclds a
single value for fk(v) which, drawn as a line parallel to the p—axis, gives
the values of u which satisfy (3.6) as the ordinate of itsintersection with
the function f, (1). Seen with the p—axis pointing up, these points give the
energy spectrum of // in the span of the function set {\I/Zl It can be

shown [1, 9] that the closure of a function set so defined constitutes a

Hilbert space, subspace of [? (R*), and that the operator with that do-

main is a self-adjoint extension of the formal differential operator /4 as
given in (2.1b). The spectrum has the following characteristics: any real v

which is chosen has its companion g's. If this v is different from & + 1 or
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Figure 1 Spectrum of a half-oscillator with a weak centrifugal barricr y/r*. for k= 085 Le, e e e m .7_‘[1

y = 0.24. The self-adjoint extension is chosen through fg = 2. The corresponding spectrum {ﬂl}
is found as the solutions of fx(u) = 2, and indicated by mceans of the thin arrows.
Figure 2 Spectrum of a half-oscillator with a strong centripetal well o/r?, for k = (1 +i)/2, ¢

- v=-1.25. Now V) =1, .l;ld the sclf-adjoint extension is chosen for arg f3 =60°. The cor
. ) - responding spectrum is found as in the lirst figure.
| - k+n n=0,1,2. ... Then the spectrum is nor equally spaced [if ’

is a solution to (3.6). » = /1 arc not solutions], but it does tend asymptoti-
cally to cqual spacing as g grows (i.c., the harmonic oscillator cnvclo;’)e'
remains as the dominating potential for high cnergics). The spectrum
corresponding to any one self-adjoint extension is bounded from below
(there are no zeros or finite poles to the left of u =1 — k), but the lowest‘
cicenvalue may be chosen as far negative as we please. This analysis in- :
cludes the choices ¥=1 — &k or v=4Kk, corresponding to fk(p) Zero or
inlinity. o

o) For k=(1 +ix)/2. KE R*, since k*=1 —k, the range of the
function (3.6) is the unit circle in the complex plane. We may nevcrtheless‘
compute fi (1) and plot its argument modulo 27 as in figure 2. If w
choose any fixed real v, the companion u's which determine the spectrum
and cigenfunction set can be found as before. The spectrum {u}is again
noi equally spaced, but it tends asymptotically to equal spacing as u
vrows. This behaviour may be seen in the relation [10] :

points separated by integers. For necgative p the spacing thus grows cver
larger but the spectrum is not bounded from below.

For every chosen ¥ we thus have a corresponding spectrum {g} Again,
eigenfunctions belonging to a given spectrum span a space of functions
whose closure determines a Hilbert space, and a corresponding sclf-adjoint
extension of the formal differential operator H. Eigenfunctions of dif-
ferent self-adjoint extensions of /f dre not orthogonal.

1IV. NORMALIZATION

We require the eigenfunction sets (2.2) to have unit norm [IA =

(‘I’k ‘l/k)/2 = 1] under the inner product (2.6) so that they represent
proper quantum-mechanical states. The proccdure we follow here avoids
the use of integral tables, is apparently novel [11]and will be used again in
the next scction.
We find the normalization constant c in (2.2) calculating the inner
product (3.2)-(3.5), writing u=v» + €, cxp.mdlng all functions of € in
Taylor series and retaining terms up to first order. The limits € = 0% .and
in r—> 0% may be exchanged. We thus write
(3.7) for f, (= 1) as g = —oothe phasc of f; (k) increases ever s]owcr,uq,s“
the increase of the harmonic series. and does n0r turn by 27 betweens
ok = IR = lim (V5 95, ) = 1im (20)7 w(wt”, vk

€0 € =+ 0 v +
r— 0
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© and the reflection formula [14]

L0 pegke gk
2% Wy, W) -
u=-v

I'(z) = 7 csc(n)T(1 = 2) , (4.5¢)

“forz=2k+nand 2 — 2k + 1. They are given by

]

[cf 2 721 csc (2mk) é% ([C(k =)L) —k — ))™!

;s . ~

-0 =k =)k — )] ‘4 Gan = Beunl3nICk+m)V2 (4.60)

B=v 7 ! .

‘J: T = ¢ [ ]"’f‘("—2k+n)]"’2 . (4.6b)

We introduce the digamma or y-function defined through [12] ~ke+n 1-ken 13
d forn=0,1,2, .. .Thecasc k= 1/2 is then covered by
v(x) = g7 In ) = T'(0)/TKx)
Czon = WhewyTinl . (4.7)

obtaining ©
and can also be obtained from (4.4) using (4.5a) and the derivative of
(4.5b).

In the &£ > 1 interval, corresponding to a strong centr lfu;_.,al bamcr “the
reasoning (4.1) applies provided we let r = 0% last. since ‘lfk +nsc 1S NOt
square-integrable for € # 0. The result, for v =4k +n, n=0, 1, 2. ... is also
given by (4.6a) —thereby valid for & = 1/27 whith a proper positive radi-
cand. Equation (4.6b) does not hold in this range: cigenfunctions arc not
squarc-integrable, and this appears in (4. ()b) through a negative radicand.

When v=k+norv=1—k+n n=0,1, . (for the values of & for
which this is applicable) the qumtum-mcchamcal wavefunctions (2.2)

may be written in terms of the well-known Laguerre polynomials. 'n'icéd

substituting for the former case (4.6a) in (2.2), using {15] and ;nrformn 3
asmall amount of algebra we find explicitly e

A k ‘.’TH_ _\»""(I*k"v)“w(k_v) k =
“= e [3 cs¢ k) S TR =0 )Tk - 9) 1l

sention. The same result may be found through the standard integral
tables {13]. The case &= 1/2 may be obtained letting k= (1/2)+ 8
with ® =0 from positive real or imaginary valuces. The result is, for

#(1/2) 4 n, 0 integer.

e i bl 2y-172
et = g idyd Cuyr - vy

where the trigamma function ' () = dy(x)/dx appears. :
In the exceptional interval 1/2 <k <1 the same general exprvssmn
(4.2) with a positive radicand applies. The special cases v=k +n

I A+ n=0.1.2. .. arc obtained using

Wi (1) = 6k (=)' [2n//T(2k — m)?

+n

_ 2 — 1/ -
¥ o =112,k 1/‘.[‘;2& ”(rz) : (4.8a)

P(-n -€) —— (=1)"""/nle

= which can be compared with the standard literature [8], we set thus

pl-n-e —— lle 6., = (=), (4.8b)
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' =k + n] constitute the correct choice of self-adjoint extension for the

Hamiltonian operator.

tion, this corresponds to Bargmann’s phase convention. In the case - .
v = | — k 4+ n,a similar proccdure leads to " - v QDAL YSTACED sTrCTR
We would like to present now a two-chart operator closely related to /7
in (2.1), whose eigenfunctions can be represented by two-component
functions, cach component given by (2.2), which includes the equally-
spaced spectra seen in the last sections for & = 1/2, and whose spectra
—for all k— are cqually spaced.
. The interest in this operator arose in the study of the coupling of two
harmonic oscillator Hamiltonians #, and H, (each with v=0) to a total
H'=H, — H,. This has been used to find the continuous-scrics represen-
tations [17-19] and the Clebsch-Gordan coefficients of the three-dimen-
sional Lorentz group [20]. It is

-k
Vi han() = W L, ()

with choice of phase
k — 4k —
¢l—kon - ¢kon - (_l)n .

This means that the form (4.8) is valid for K > 0 provided we understand
that the new range of A, 0 <k < 1/2, where /f has spectrum {p}, u=k +n,
For all other values of & and v, from (4.3) the normalized wavefunctions

dre

a? 02
— + + x? —x%] , Xp.Xxy ER (5D

AL _ 1
l}_H =H -H, —5[— o3 a—\—g X3

\I/k =
B (r) =

"The minus sign between /| and H, replaces the plus sign commonly
used to construct a two-dimensional oscillator which may be separated in
polar coordinates. In the latter the radial part (2.1) (y=m? - 1/4,
m=0, 1,2, ..)is obtained projecting cverything on the subspace of states
with a definite angular momentum m. In the present case, we repara-
metrize the R? planc X, X;) in two charts of hyperbolic coordinates
(o,r,0): '

Y PV —k—v)(k—-v)

: ) —k =)= Yk - -1/2
é/‘ [7—: Csc(?.rrk)‘r’(l k—v)—V(k u)] PV () (4.10)

with the spectrum {¥}

The developments of the preceding sections constitute a straightfor-
ward application of the quantum mechanical formalism to a family of
potentials v/r* +r% (which is at least partially unphysical for 7<02
which presents us with a freedom of choice in the spectrum for7<3/f§
for which there is apparently no sclection rule. Probably most physicists 3
would select the Hamiltonian self-adjoint extension where the spectrur 2
isu=k+n n=0,1,2,.. on the grounds that the kinetic encrgy has the

for x; > x, , 0= +1, x;, = rcosh0,x, = rsinh 6,7, 0€R (5.2a)

us ; for x; <x,, o=—1 x, =rsinh 0.x, = rcosh6 . (5.2b)
a finite expectation value:
There are two more one-dimensional charts for X, =x; and x; = -x,,
-but these may be disregarded here. In the 0=+ 1 chart, the r = constant
ine parametrized by 6 is one branch of an equilateral hyperbola which
Crosses the x,-axis at r. For r € R this covers the ‘inside’ of the cone
= Ixy I>1x, 1. Inthe o= —1 chart, r = constantlines are hyperbolae crossing
_thc X, axis. The two charts are necded to cover the R?-plane (excepting
‘the Ix, I= Ix, | lines). The surface element is dx,dx, =rdrdf in both
> Charts.

Put in terms of hyperbolic coordinates, the operator (5.1) appears as

(Wh.5PTO) = SPUL,PUL) < oo, P = —idjr !

since —as was observed in section II— these functions have square-integ
erable derivative. The extension of the operator thus defined is the?
Friedrichs extension [1]. The choice exists for 0 <7 <3/4 (3/4 <k <1
while for y=0 [k=3/4 and 1/4 according to the identification (4.9)],:
‘common sense’ would say that to restrict a one-dimensional quantum
problem to the r> 0 half-axis requires an infinite potential barrier-at
r <0, so that the cigenfunctions which vanish at the origin [k =3/4,;
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b
tion (5.1)«5.5) does not yield values of 74 in the exceptional interval.
- Again, we may pose (5.5) ab initio with no restriction on 7.

To conform with (a) and (b), the inner product betwcen the two-
component functions f(r) = {f4, (r), f-; (r) }is defined as

'_Q.__a_z. la, 129 2
/I —2[ ar’ +rar+r1.a_9—1_+r

(f, g)—‘[ dr f(n' g(r) = Ef arfo(N* &N . (5.6)

o= zt1

eigenvalue A [1.c. of those functions flx,, x,)=f [o,r,0]=¢_(r) e”‘
with fixed A € R] produces a Hamiltonian operator of the form (2.1b
withy = =A% — 1/4 < —1/4. The resulting operator,

The inner product, in turn, defines a Hilbert space where we require the
eigenfunctions of H to lie, and H to have one or more self-adjoint ex-
tensions.

To this end, most of the groundwork has been developed in the former

[_ 5_23 + 12 + r{’ = oH (5‘:4) IR - sections. The solutions of the eigenfunction equation (5.5) are the same as
r e

H = ,-I/ZH'rlnIA =
those for (2.1) —except for the minus sign in the lower component. Thus

r1Q

> o] v in (D .
appears to be closely related to A in (2.1b), except for: \I};“(r) — c':,ur'm w”'k_m(,z) . (5.7)
a) H is a two-chart operator, i.e., 0 = +1 gives its form when acting‘
functions in the Ly, I> lx, [hyperbolic coordinate chart, and 0 = —1 when
acting in the b, 1< Ix, | chart. Both forms constitute a single operator
which can be cquivalently written as a diagonal 2 X 2 matrix operator
acting on two-component functions ¢_(r). The cigenvalue problem (2.1) =
thus rcads here

where the search for the new constants c" “ will be done below. The
analysis of the square-integrability propemes under (5.6) proceeds as
before. For 7 2 3/4 there is onc family of square-integrable solutions with
positive spectrum: u=k +n, n=0, 1,2, ... for k 21 which has only an
upper component, so c" 5 = = 0, since the lower component is not
square-integrable. There is a!so one family of negative-spectrum solutions

=—k-m n=01,2,.. with “—0 which has only a lower com-

H‘l’ﬁ(’ =2 I-i‘l’ -, (5.5a) ponent. These are the only spectra Wthh depend on square-integrability
properties.
H 0 vt : ' When v <3/4 we must use the analogue of Egs. (3.2)«3.5) for the new
H = L) = #h (5.5b) inner product (5.6), i.e., we must additionally sum over o noting that the
0 — H/ m ‘I/If, L R 0=+1 and 0= —1 components have different eigenvalue signs:
-_— - . k. k
b) The domain of each function component in [17] was over rER :.(\}f:)\}}“) = [Ap—»)] l[w(‘plfx v q W)= WY, o9 ¥y ) Fe 0
rather than r € R* as here. In Ref. 17 we further decomposed this funo-
tion according to parity and restricted thusr to R*. The price paid wast . K Pl &
s, vt it Y

obtain only spectra where the eigenvalues are integers (even functxons) or =[Au— )]t csc (27k)
half-integers (odd functions). In starting with (5.5) on R* instead of (5.1)
¢ do away with this restriction.
&) As we saw in (5.4), v is restricted to (—oe, —1/4] (the value 7=, /4

is absent if the eigenvalues u are half-integers). The “‘coupling” constru

Tk —v)I(1 —k—p) T(k+)I(1 -k + p)

ke & &
3 .

+1,vCe,u “lu

T —k—w)(k—p) T(1-k+)(k+p)

(5.8)
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céunterpart (2.1) examined in sections II-IV. Our interest. however. lics
in the equally-spaced spectrum (5.10) derived from the ratio function
(5.11). We may thus set

The spectrum for the one-component operator A was found cancelling
the first and third terms. Here we have more possibilities, chicf among
which is the cancellation of the first with the second, and the third with
the fourth terms. The two resulting equalitics can be made to have one
common term involving the & ’s: %

Co = 05, [Tk — op)T(1 = k — op)]"?d% 19,,1= 1  (5.12)

c*k ck

c
Lo +lu _ 'tk — (1 — k —p) _ Ll =k -k —u) . (5.92)

c'l" c"l Fk F N —k % ) O EDRCETD) where as before we lcave the possibility of a phase ¢ e We now inquire
=l =l

into the proper normalization constant d* . This may bc obtained through
the same process as that followed in section 1V, replacing the inner pro-
duct in (4.1) by that in (5.8)(5.12). We use (4.2) to differentiate the
I-functions with respect to u; the four distinct ¥ functions which appear
combine, under the logarithmic derivative of (4.5¢)

The second equality in the above formula will be the condition which the
u's should satisfy —given a fixed v— in order that (5.8) vanish, and the
corresponding {\l"‘ }form an orthogonal cigenfunction set. This transcen-
dental cquation 15 rather simple, however: using the reflection formula

4.
(4.5¢) it may be brought to the form U(l—z2)— Y(z) = mcotz | (5.13)

into trigonometric functions. The result is

sinm(k — ) _ sinw(k —v) (5.9b

sin m(k + u) sinw(k +v)
r dk = g1 in 7(k — i - 172

whose roots are given by v = 7 [2sinz(k = v) sinw(k +p)]V2 (5.14)
) The normalized components of the square-integrable eigenfunctions
w =wv+n, ninteger, (5.10) 7 i WK of the operator H, in the domain where it has the cqually-spaced

i spcctrum (5.10), may be thus written from (4.5¢)<5.7), (5.12), and
. (5.14), as

cal functions, onc ofV and the other of u. This ylelds the ratio L r 1
e VEe(r) =6k 5Tk + on)I(1 — k + on)]V2r W (), (5.15a)

v=e+n, —1/2<e€e < 1/2, ninteger . (5.15b)

s _ [D—wra - k—m]"” (5.11)
C}il,u Lk + )01 = &k + p)

% The parameter € =» (mod 1) €(—1/2, 1/2] is used to label the self-
k2 adjoint extension of the operator H. As it appears here, it is identical
¢ with Bargmann’s label € which distinguishes between single (€ = 0) and
> double-valued (e = 1/2) representations of the three-dimensional Lorentz
i group, and whose extended range € € (—1/2, 1/2] labels representations o1
= the covering of that group. The “proper” choice of phase ¢;: , will be
¢~ made in the appendix. See Eq. (A.7). '

3 We now proceed to examine the information contained in the normali-
- zation factor over the full range of  or k. The radicand is real, notice, for

—up to a phase— between the coefficients of the two components 0
\Ifﬁ. This ratio is here obtained as an output, a consequence of assuming
that the two neighbouring pairs of terms in (5.8) cancel. One may con-:
versely assume the ratio CA u/cfl to be some function p(k, u), ex-:
tracting thus C"‘ o

., trom the brackets in (5.8) and, requiring this
bracket to \amsh for fl\Ld v, thence find the values of ¥ which constitute
the spectrum. The two-component Hamiltonian operator (5.5) is thus
considerably richer in self-adjoint extensions than its one-component *
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