W ' fa',

Kinam, Vol 2,223-272 (1980)

Travelling waves, symmetries and invariant
quadratic forms in discrete systems

| ;___}_ i Kurt Bernardo Wolf

% o 5 i ' Instituto de Investigaciones en Matemdticas Aplicadas y en Sistemas
’ : Universidad Nacional Auténoma de México,
Meéxico, 20, DF, Mexico

(Recibido el 7 de febrero de 1980)

7 ) . We consider discrete, finite systems which abide Klein-Gordon, damped wave, or
Helmholtz difference-differential equations. The evolution operator of these systems
is diagonal in the travelling-wave basis. There, the symmetry properties are most evi-
dent. We construct the complete set of sesquilinear and bilinear time-invariant forms
associated to a factor ring of the phase-space symmetry group of the systzam. The as-
sociated constants of the motion have the structure of energies and angular momen-
ta. Their homogeneity under geometric (dihedral) transformations and time inver-
sions is examined, as well as their positivity properties. Lastly, in letting the elements

. of the system approach a continuum, and imposing Poincaré or Euclidean invariance,
i RO we obtain the positive inner products for the Klein-Gordon positive-energy solution
space and for the oscillatory Helmholtz solution space.

I. INTRODUCTION
0 : 1.1 Lattices

; Consider a system with V elements whose configuration and motion at
a given time ¢ are determined completely by a set of observables f,,('r),
n = 1,2, .., N, the subindex referring to the nth element of the system,
and the components of this vector encompassing all the information need-
ed to specify the state of the element. In the first five sections we shall
treat as a concrete model a system composed of point masses M,, n =
1,2,..,N and springs joining these masses with Hooke’s constants k"’n',' =
k,-l,n:for the spring joining masses number n and n', inmersed in‘a viscous
medium with damping constant Cn for the nth mass, with one space
degree of freedom, specified by its elongation, L, (), for the nth mass at
time t. Such a mechanical model will be referred to asa discrete N-ele-
ment lattice [1]. -
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1.2 Equation of motion

It is well known that the equation of motion. for ea_ch element ott: t};e
lattice can be set up considering the force§ actmg on'nt: the SL;cm o t(;;
forces on the nth mass due to its connecting springs is — E,}. o' Uy

ine tying M_ to its equilibrium position will yield a force
— f,.(f)], a spring tying M, i The mass M will respond
of —k__f.(¢) and the viscous force ——Cnfn(t).. N 1,
with a'r;nagceleration . (1), leading to the equgtxons of motion

M f () + C,f, (D)

N
+ 3 kU (®) = Fe) + K f(8) = 0. (1.1
n'=1 ::f
This is a couplé'd set of eduat'io'né.' The purpose of harmonic analysis is io
solve (1.1) through uncoquing-th&equations of the set such that only

ordinary differential equations are left to so_lve. Fourxerfana}lysm mex;seeofsi
to this purpose since it uncouples the particular case of.a z‘omog neous
lattice, i.e., a lattice which consists of equal masses M, da_mplmg cc:g ans
C, and a set of”spn"ngs whose Hooke’s constants depend only on the

! =k Y
tance’ between the masses as k,m, nen'l '
It is convenient to think of such a lattice arranging the masses around

a circle. numbered by successive values of n, witshllgcﬁ being.the }gozkt?oi
SEar i ighbours. Slight care is neede
constant of the springs between pth neigh .
i it i = (N — 1)/2 while when
lue of p: when N is odd, it is P(N) = ( )
;\;]eisui?/:; V?tuis P(},\)/) = N/2. In the last case the Hook§ s constant be-.
tween the,antipodal pair should be divided by two, to give Ky pp» @s t»Yo

i i iti 1.1).
th neighbours are assumed in writing ( ) '
8 We cii:m then write (1.1) as the N-dimensional vector equation

e B

ki K il b6 s t6 8 the iteracton matt; s slmentscan b
found through elementary, manipulation of.-the sum in.(1.1), as K -
H‘Km’,“-:r:: freap xibA oa 2703 )
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It is a symmetric, circulari(zg matrix. When only first neighbour interac-
tions are present (ko = 0, %, # 0,k, = 0, p = 2,'3, .., P(N)) then K
is —k, times the second-difference matrix (K = —k, A): '

&= “Ann'“ ’ Ann' = —25n,n'i+ 6n,n'+ 1 +6ri,n'—.l- : : (]4)

with 7 and »” counted modulo N. Fa}ther-héiéhbour interaction matrices
-up to gqth neighbours, say- are expressible as a linear combination of
AP, p =10,1,..4. r ol

—
2}

1.3 The Fourier transform

T
A

The N-dimensional Fourier transform is a change of coordinates in -
space brought about by the Fourier matrix

CF=IE,ll , F, =N exp(—2mimn/N) 5 (1.5)

It is one within a class of matrices [2] which diz;gonalize A:

F1AF =6, . A\, Il , A, = —4sin?(am/N) . (1.6)

It is unitary: F™! = FT and a fou}th root of the unit matrix: F* = 1.

The general homogeneous lattice interaction matrix K is also diagonalized,
then, as

F'KF = |5, u, | (1.7a)
P(V) . L.
M, =ko + 4 Z k, sin? (mpm/N) = py _ . . (1.7b)
p=1

The set of N equations (1.2) then uncouples into N separate ordinary
differential equations of second order whose solution -is ‘well known, and

which will be briefly reviewed in‘section I1;: =3 .l oo aiiy o
e R P e T Al s f e b B = TR s

14 ‘Phasespace - ' ¢ . o e mniiaig g lernd

Toe SRR S TR U0 LR dil 3 3 LB T o =

“The main point we wish to make in section 11I'is"that the description -

‘of the homogeneous lattice and its solutions takes thé simplest concéptual

form when we use the 2N-dimensional phase space of the lattice. We know
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from elementary mechanics that for vibrating lattices,'tk‘le complete sdpf:;::
fication of the state of motion requires both the positions fn (t) an

velocities f(t) of the masses, or equivalently,' the momenta an(t?itln
these termsn the N-component equation of motion (1 .2) should be written

as the 2N-component equation

Hf(t) = 9,f(0) , (1.8a)
(6] M~ )
H = ,
<—K —CM™'1
TAG)
o RG] _ ' -
Iy, ol M, )l

Hencefort, the boldface sans serif type will be reserved for vectors and

matrices in the 2N-dimensional phase-space of the system.

Equation (1.8a) is an evolution equation with a generator H and a first-

order time ‘ ‘ .
operators is the basic step here. It leads to simple formal solutions

f(r) = exp (tH)f(0) = G(HHO) ,

derivative. Replacing second- with first-order differential

(1.9)

where G(t) is the Green’s or evolution operator of the system, anq has th:
general form of a one-parameter Lie group element. The travellmgiwa';
basis is the basis where the operators in (1.8) and (1.9) are completely

diagonal.

1.5 Particular cases

i ticular systems:
We shall systematically stress some p'ar .
A) The (discrete) Klein-Gordon equation: Egs. (1.2)-(1.3) with

= = 2,3, .., P(N).
=1,C=0,ky = 0 forp

k¥, k, = landk, =
i i =c¢?2=1,ky =0,k
B) The (discrete) wave equation, with M = ¢ , Ko 3

M=c"?

=_1,

and k. =0, p = 2,3,..., P(N). We shall distinguish between the

damped (C > 0) and undamped (C = 0) cases. ~
C) The (discrete) Helmholtz equation: M=1,C=
—1 and kp =0forp = 2,3,..., P(N). -

0, ko = K2, Ky
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1.6 Symmetry

Section IV is devoted to find the symmetry group of the general system
encompassing A)-C). There is a ‘manifest’ geometric dihedral symmetry
group D, for the homogeneous lattice, of course. In the travelling-wave
basis, however, a larger symmetry group, containing a finite DN®,DN :
subgroup is seen to describe the system under transformations in phase |
space.

1.7 Quadratic invariants

In section V we relate a subring of the Dy © D, group ring with the
set of quadratic forms. This relation has been established, to the best of |
our knowledge, for systems which are symmetric under continuous groups |
of transformations, where for each of the linearly independent Lie genera-
tors we have one invariant quadratic form. These are here equivalently §
described through a factor subring of the symmetry group ring, and lead |
to the specification of the complete set of sesquilinear and bilinear time- |
invariant forms and constants of the motion. This is, moreover, not coinci- ¢
dent with the total number of constants of the motion linear in the initial
conditions, but a set of equivalence classes of the latter. We then restrict
our quadratic set to the subset invariant under the geometric Dy symme-
try group of the lattice, and find two types of invariants: energy-type and
angular momentum-type. )

1.8 The continuum limit

In section VI we let N = o and arrive at the description of homoge-
neous non-compact media subject to the Klein-Gordon and Helmholtz
partial differential equations. There we can further demand Poincaré or
Euclidean invariance for the quadratic forms obtaining the unique inner
products (and subspaces where these are positive definite) which ensure
the unitarity of all phase space transformations in these groups.

Basically, our aim is to extend the study of groups of canonical trans-
formations from quantum mechanics [3] to certain discrete, finite systems,
and also to certain continuous systems whose governing equations contain
second-order time derivatives (4, 5]. By and large, it seems that matrix-
-operator realizations of Lie algebras, Lie groups as well as the Hilbert
spaces one can define for them, have been slighted in the literature. In this
article we try to give a more complete account of the inner products one
can construct, as well as a better insight of the workings of group theory
on discrete systems.
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1. FUNDAMENTAL SOLUTIONS AND NORMAL MODES

In this section we give a résumé of the Fourier solution method for the
second-order equation of motion (1.2). This will serve to extablish a frame-

work and introduce notation.

1I.1 Uncoupling

Applying F™! to the left of (1.2) and defining the new vector f(r) =
F~'f(¢) we find the components of the latter to satisfy the uncoupled

set of equations
ML)+ Cl D+, fra) =0, m=12.,N. (2.1)

1.2 Oscillating solutions

The solutions of equations (2.1) are in generzgl damped oscillatory
functions. In terms of the initial values f_(0) and f,_(0) they can be ex-
pressed as

7 () = [ (8) + 20G,, (DY, (0) + G, (117, (O) (2.22)

where Gm (¢) are the set of Green’s functions for damped one-dimensional

oscillators

G, () = e T ()" sin(wy, 1) = Qiwt, )™ (e'“m® — ¢'“m®)y | (2.2b)

with damping constant and effective frequency of oscillation given by

(4

F=C2M, o =[p,/M-T*1" =0wg ., . (2.20)

In the last expression of (2.2b), the partial-wave Green’s function is dis-
played as a linear combination of two complex-frequency parts with

Wi =t +il . (2.2d)

The general characfe} of the possible solutions for the homogeneous latt,i-
ces depends on the possible values of u_ in (1.7b). If some of the Hooke’s
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constants are negative —i.e., the oscillators are repulsive— then it may
occur that some of the u s are negative. For those values of m for which

By, > I'2M, the effective frequency w¢, is real and the solutions (2.2a)
have an in general damped oscillatory behaviour. As both ém (t) and its
time derivative G, () are even functions of wf,, it is sufficient to consi-
der the positive value of the square root in (2.2c).

1.3 Exponential solutions
If there exist values of m for which u,, < I'?M, the effective frequen-

cy wy, will be purely imaginary. The Green’s function (2.2b) then takes’
the form R

G (1) = e (we, )1 sinh (We, £) = (2wS, )"} (e'mf — e m') | (2.33)
iwf, =wp, =[I?—p, /M =wy ., (2.3b)
iw: = =% wfn (2.3¢)

where again it is sufficient to consider the positive values of the square
root for the values of wg . The associated solutions will be called ex-
ponential.

11.4 Critical solutions
Finally, critical solutions may exist for some m, when B, = M,

SO Wy, . = 0. The solutions of (2.1) will then have the form (2.2a) with

G. (1) =te"" . (2.4)

This form could have been obtained from (2.2b) or (2.3a) letting wg, —
0. The solutions (2.2a) are then linear combinations of ¢t e T'f and e~T?,
In the case of the undamped wave equation, the m = 0 solution is allways
critical. =

1.5 Green’s operator

Once we have found the solutionsfm (t),m =1, 2,.., N, as determined
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through the initial conditions f”m (0) and fm(O), we may revert to the
‘physical’ elongation basis [0, n= 1,2, .., N and write them as the

components of
f0) = Fit) = [G() + 2T'G(]E(0) + G(1) £(0) , (2.5a)
where Green’s operator is given by the matrix

G(r) = FNOF™' , G(t) = 118, G (DI, (2.5b)

which is symmetric and circulating.

11.6 Fundamental solutions

Two sets of initial conditions are important here: those giving rise to
fundamental solutions and those giving rise to normal modes. The first
ones are obtained through taking the 2V components of f(0) and f(O) to
be nonzero one at a time. These represent the motion of a lattice which
starts from rest with one mass out of equilibrium, and one which starts
from equilibrium with one mass moving in the positive direction with
unit velocity. The 2V fundamental solutions obtained in this way are the
N columns of G(¢) + 2I' G(¢) and the N columns of G(¢), respectively.
The most general set of initial conditions can be written as a linear com-

bination of these, as stated by (2.5).

I1.7 Normal modes

The set of normal modes is obtained by taking the 2N components of

f(0) and f(O) to be nonzero one at a time. As the components of f(t)
follow u.ncoupled motions, only one f,F (¢) will be nonzero, that off;t (0)
and/or f’; (0). When we revert to the ‘physical’ elongations f(¢) = Ff(t),
they will appear as the mith column of F multiplied by the common
factor f5 (), ie., f(”f”(t) =F,ufm()forn = 1,2, ..., N, with no sum on
7. The solutions are then separable functions of the mass position n and
of time f. Normal modes are thus time-modulated standing waves in the
lattice, which beats with (complex) frequencies w,;. The phase of the mo-

tion is linearly related to arctan [f:,;! (O)/j:,; O]
The descriptions of the lattice motion in terms of the_coupled elonga-

tions f, (r) or the uncoupled normal mode coordinates ¥ (¢) are related
through the Fourier transform. We would like now to present a third set

N

L
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of coordinates which we deem more convenient in the description of the
motion of a lattice: the travelling-wave basis. Mathematically it results
from the search for the simplest description of the solutions to the 2N-
component first-order equation (1.8a), rather than the N:component

“second-order equations (1.2) or (2.1). It will be shown to lead quickly

to a description of the invariant quadratic forms for a lattice.
IIl. TRAVELLING WAVES

The evolution form (1.8) for the lattice equations of motion makes
use of a 2N-dimensional matrix H, whose diagonalization we now address.
Indeed, in the last section we used the N X N Fourier matrix F to dia-
gonalize the interaction matrix K. In 2N-dimensional terms, this is a re-
duction to block-diagonal form:

F! 0 0 M1 F 0
F-IHF = =
o F!Y/\-K -cM'1/\0 F

0 M1

=H. (3.1
- Hénxm'#m” —CM_XI

III.1 Complete diagonalization

When none of the p is zero, the complete diagonalization of H can be
achieved through a further similarity transformation which acts on the
submatrix of H constituted by its mth and (N + m)th rows and columns
as

0 M1 iw}, 0
. (V(m))-l V(m) = , (328)
—Hy CM™! 0 iw;,
1 l
ym = M'“’(wfn )—? ) (3.2b)
Mw;,, Mw_

R S —
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‘ﬁ * iw! t
The eigenvalues jw! are given in (2.2d), and we have chosen det V(™) ' 8, e “m'll 0
= —2ilw§,. fn =GOTO , G = (3.5)
0 1I8,,,e“m|
I11.2 Null eigenvalues e
In order to simplify the discussion, we shall normally assume that Application of X to this equation then yields the description of the elon-
there are no critical solutions, i.e., w® # 0; to avoid them, we can al- gations and velocities of each of the lattice masses as the components of
ways introduce a small chang:? in sa)’/n, ko. All basis-independent results f(), in terms of the 2N linear combination coefficients f(0) times the
can be regained by letting this ko regain its former value. Those argu- elements of each of the rows of XG(#). Again, one prefirred setgf initial
ments which are specific to travelling waves, however, do not. For the conditionsisimportant: that obtained through taking the 1., _, (0), 1, _ (0),
. : = ‘a time. he corresponding set of
. (m _— e = (. Special comments ; m l,...,N to be nonzero one at a time Then,t p
la;tleg w’/eﬂmtayd ?eﬁne Vth; Cale;vhenever ©m ¢ P s 2N solutions, which will be recognized below as the set of travelling
Wil e nseried To Coyer taese ’ E waves in the system, are given by the 2V columns of XG(¥).
—_— i - It should be noted that the N X N submatrices in X and G(¢) are in-
: é"ave gwave basis variant under the simultaneous permutation of the mth and (N — m)th
. rows and columns, [i.e., F = F , Wi = wi by (1.5)
i . .2) we obtain ’ » i man N—m,N-n> "m N—m ’
Composing (3.1) and (3.2) W (1.7b) and (2.2¢)]. The origin of this property is due to the invariance of
5 . 0 a homogeneous lattice under inversions mapping the position n onto the
_ 18, s 0 3 i position N — n. This particular inversion keeps the mass at NV at its place;
XIHX = H =i ’ (3.3a) ‘ if NV is even, also the N/2 mass is invariant. In conforming with the Bri-
0 N6 @ I llouin convention, we shall henceforth consider the N values of the in-
dices to lie, whenever convenient, in the range of integers, for N odd,
. WE. s || NE  Jwe |l between —P(N) and P(N), for N even, between —P(N) + | and P(N).
et nmtom e (3.3b) Although we count modulo N, we shall sometimes speak of ‘low’ and
X =M . ) . ’ ‘high’ partial waves, meaning those near m = 0 and m = N/2 respectively.
IM|F,,, @}, [, [ DMLE,, w, [ |l We define the (m, &) -travelling waves as the lattice solutions given by
£ >
Ml XL =IEm ‘ W) = Wl = (X6, = W™ (0)em’ (3.6a)
X1 = %LM‘“Z (3.3¢0)
—iM|ley, Frnll HFE 1 W) = (WO = (XG(D) e = WT(0) T (3.6b)
The 2N-dimensional vector W (1) = (MN)™V2(wS,)™! exp i(w?, t — 2rmn/N)
NS (DI = (MN) V() exp (=2rim[n — v}, t]/N) , (3.6¢)
T() = X7 (1) = , 3.4)
f o, (D] v, = Nw. [2rm = N(l * w;,)2tm . (3.6d)
will be then subject to a particularly simple evolution equation: Eq. (1.8a) 0.4 Velocity
i i ix H in place of H. Its solution, in terms of the "
:vx_t_hot};znc(l;iatgi;;)::li;natrlx H it g .-, * The set of 2N independent solutions (3.6) represent waveforms of the

A ..
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lattice, [i.e., they are proportional to complex exponentials in the mass
position n], labelled by m and 2 which travel, as they are functions of
n — v; ¢t The in general complex velocity v, is given in (3.6d) in units
of interparticle separation per unit time.

It might appear that counting modulo N we may change the range of
velocities in (3.6d), since vy, ¥ Uy 4 - Dhat this is not the case should
be obvious from the invariance of the second member of (3.6¢) under
m — N + m for integer values of n, i.e., for the actual mass positions.
There is a concommitant apparent paradox: higher values of |m| seem to
entail a greater average movement of the masses although the travelling
waves have a smaller velocity. The fact which sets intuition straight is
that the wave number (the number of wavelenghts around the lattice)
also incrases with (in fact, is) |ml (7]

Since it is the heart of the matter, we should restate that the travelling
wave solutions w;"”(t) as we have defined them here, are functions of
n— U: ¢ due to the fact that (a) they are constructed as the eigenvectors
of ¥, and hence G(t) is a completely diagonal matrix with linear ex-
ponential dependence on f, and (b) the lattice being homogeneous, the
diagonalizing matrix X contains the factor F which has a linear exponen-
tial dependence on the row index n. Exponents sum and the proportiona-
lity between the linear dependences is the velocity of the wave. This can
be a real quantity, but in general it will be complex, meaning that damp-
ed oscillating or exponeéntial behaviour are at work.

At this point we should particularize our discussion to the three cases
listed in subsection 1.5, so that the nuances of (3.6) be properly clarified.

111.5 The Klein-Gordon case

First, for the case of the discrete Klein-Gordon equation [M = 1,
C=0, ko =« k=1 k, = 0, p = 2... A(N)], as po = k? <
H,, < k? + 4= pym undamped oscillating solutions exist with fre-
quencies in the range wé =k < w, S (k2 + & = wyy,, Mo
notonically increasing in (O, N/2) and decreasing in (=N/2, 0). Here
v, = th;/?.mn is a.real propagation velocity for waves moving in
the direction of, or against, increasing mass position n. As v, isa func-
tion of m, dispersion of signals will in general occur. The only consistent
degeneracy in the velocity is between + ym| and —|m| waves [c.f.; Egs.
(1.7b) and (2.2¢) for m # 0 and m # NJ/2). We have v = T &
—v”,, . These pairs of waves travelling in the same direction, however,
differ through their initial conditions as Wt (0) = (w0
through linear combinations, hence, two independent waves can always
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be constructed. Linear combination of travelling waves, however, does
not yield a travelling wave. The m = 0 ‘travelling’ wa,ves wo ’merit
spe?ial consideration. They are realized in a lattice, subject to the discrete
Klein-Gordon equation, with initial conditions given by all masses being
equally displaced from equilibrium: wg"ﬁ 0) = (]VIN)"’S((_og)~l with
mass velocities given by *icwg times this elongation, i.e., 'w%” (0) has
th.e masses moving ‘up’ and w%" moving ‘down’. The ensuing motion
will l?e oscillatory, but as a travelling wave, the m = 0 waves have no
deﬁmte sense or velocity of motion in the basic Brillouin range. [If we
shift this range tom = 1, 2, .., N, however, and view wo= (0) as initial
cqnditions of wave number N rather than 0, their propagation velocity °
w‘ljllt_be tw¢/2m from (3.6d).] Out of linear combinations of w®™ (¢) and
W ({) we can build solutions whose position or velocity at t = 0 are
zero, i.e., .we may revert to the normal mode solution basis described in
Sect. II. Finally, the m = N/2 travelling waves (for NV even) exhibit the
smallest velocity in the basic Brillouin range (wg/n) and —as the m = 0
waves— do not have degenerate companions.

Thel most general solution for the homogeneous lattice (and for the
general case contemplated in Sec i i i
gy p Sect. I) can be.wrltten as a linear combina-

() = Do D CmoW (D), , (3.7a)

o= m

wherg the linear combination coefficients are given in terms of the initial
conditions as

¥,,.(0) = [X'(0)],

e = '

Fon e (0) = [XTUH(O)]y 4 m

. N )
MY Y R f(0) +if,(0) . (3.7b)

n=1

= ¥

DO e

II1.6 The wave equation and critical solutions

: La.ttices abiding the undamped wave equation Eén be described through
the simple expedient of letting k2 = 0" in the Klein-Gordon set of solu-
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tions. The only point to note is that the m = 0 sol}ltions now becgn;t;
critical as po = 0 and w5 = 0. Although. the travelling-wave formfg .d
becomes infinite, its presence in any solution (3.7a) remains we'll de meb.
In fact. any critical solution m_, for d.amped or unda'mped lattxcesdcan.n:
considered through letting wfnc—>0 in the expansion (3.7) and using

(3.6a,b). The corresponding 1, summand is, when written out,

R O E MU )
mc’

= F,

mc,n

T (0, ) sin (W 0 Y Fh_ (D500 + £(0))

.+ cos (w,e,,ct) >, F,’,",C',,'f,,'(o)}

Fm

ne—n z F,:;C.,,'[(Ff + 1)fn'(0)+tf"'(0)]

.
mCO

= F, e+ Dy (O + 6, (O] (3.82)

This is a basis-independent statement for the m,-mode subspace, as it'su'_rr‘ls
over the two travelling-wave components. According to our. c.orwentlon‘ in
Subsect. II1.2, defining vme) = 1 sets through (3.4) thc_:, critical travelling
wave components as fmc,_,(t) = fmc(t) and f, c.,_(t) = Mfmc(t). Correspon-
dingly using f,, (0) = Cm and'fmc,(O) = M“cmc'_. in (3.8) we may
define the ‘critical travelling waves themselves as

wre™ (t) = F, L (Lt + e T (3.8b)

and. so as to supplement (3.6) for the critical cases,

wre™(t) = Fp, te™" M . (3.8¢)

plying the denomination ‘travelling waves’ to (3.8b,c) is a misnomer,

A
e fn-—ut]

though, as they are not functions 0

II1.7 The damped wave equation

Next. the solutions which describe lattices abiding the damped (C >

)
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0) wave equation should be analyzed. The discussion in Sect. Il and
specially equation (2.2d) point to the fact that through a redefinition of
functions g(t) = e'’f(¢), the vector equation (1.2) for f(¢) becomes a
similar vector equation for g(¢) with the replacements C > 0, K b K —
MTI' 2 1. This is equivalent, hence, to an undamped wave equation lattice
with a repulsive spring of Hooke’s constant k, = —MI'? pushing each
particle away from its equilibrium position, and can be thought of as a
Klein-Gordon lattice with a negative value of k2. We thus proceed to ana-
lyze the latter system, as it will also expedite our presentation of the
Helmholtz equation, below.

I11.8 Klein-Gordon equation with negative « ?

When the Klein-Gordon equation contains a negative constant x? =
—\, A = MI'? > 0, then there will be a non-empty range of m’s such
that p, < 0. At least gy < 0, and at most (if X > 4) all i, ’s will be
negative. Negative p_’s lead to purely imaginary (negative) values of the
corresponding w; 's [c.f., Eq.(2.3b) with I' = 0]. In this region, the
‘travelling wave’ basis (3.6) separates w7 (¢), the growing-exponential
solution ~ exp(iu,t) = exp (w,‘;2 t), from w™ 7 (t), the decreasing-
exponential solution ~ exp (iw_ 1) = exp(—wy 1).

The lower- |m| solutions are always of this kind because they repre-
sent states of the lattice where the attractive interparticle springs, being
on the average little deformed, are overwhelmed by the repulsion each
particle experiences from its equilibrium position. This is always true for
the m = 0 solution, as there the interparticle springs are not acting at
all. At the other extreme, the m = P(N) solution represents a lattice
configuration where neighbouring masses have opposite elongations so
that the attractive springs have the best chance of overwhelming the
repulsive ones. Finally, two critical solutions may exist if for some m,_,
Hp, = 0. These have been described in (3.8) and need not be repeated
here.

II1.9 The damped wave equation, revisited

Returning briefly to the damped wave equation through the inverse
function redefinition f(f) = e T’g(¢) and g(r) having been described
above, we see that the oscillation frequencies w,, are obtained through
a shift by iT, of £ w? . It should be noted carefully that the damped-
oscillatory solutions have an m-independent damping I', while for the
overdamped solutions, the damping depends on m, and for w™: ™ (¢)

k)
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is in the range [0, T") while for w™ < (2) it is in ([, 2I"). In the sequel we : wihiere 7(r) is the .
shall exclude damping from the equations under consideration. { ber nATHUS 1 is Sl;ew.f?o;nb,on,}under permutation, of the old mass num
| : ecified by the values it takes for n = )
i set (4.1) of permutations forms a group rn=12,.,N. The
The dihedr o
1I1.10 The Helmholtz equation equally Spacezl rsr:labsioup Dy 'CaI]] be pictured as acting on a set of N
i S on a circle a i
W _— ) M 6= Ok , 1 elements: nd is composed by the following
e turn last to the Helm oltz equation: |/M = =0, kg = K%, ; a) Rotati
. ’ ; i ions by 2nwk/N, k = .
ky = -1; k, = 0, p = 2,3,...1.’(1\/)], noting that the attractl.ve and i modulo N): g /N, k =0,1,..,N—1 (which can be counted
repulsive springs are exchanged with respect to the case examined in I11.8.
The highest eigenvalue of the interaction operator is fo = k? > 0and R} = (n + k .
the lowest is Wy, = «2 — 4. Ifk? < 4,allp,, are positive, all frequen- n+k}, ie,m(n) =n+k (moduloN). (4.2a)
v e =4 . . . 2 . M
cies w,, are real and all solutions are oscillating. If k? > 4, the highest- Ty I ) N
| m| frequencies will be imaginary leading to exponentially increasing and f ”é’arltlcular.R = R® = | is the identity transformation
decreasing solutions w™ = (£). In the last cases, the repulsive interparticle ) Inversions through a diameter, leaving the kth mass invariant
springs overwhelm the oscillators which bind the masses to their equili- ]
brium positions. Small-curvature lattice solutions, on the other hand, AnY={N+2k—-n}, ie,n(n) =N+2k—n (modulonN). (4
are stable. - (4.2b)
As in former cases, critical solutions may exist, and if so, are of the 'When N is odd, we let & range through N = 0, 1, 2 N
form (3.8). We should note, finally, that the discrete- Laplace equation is even, /, leaves invariant both mass k and its a;lti’ o’d.z;l, it
for a lattice is obtained in the limit k? - 0" | SO Iy =1, ns, and it is sufficient to let & ranpe thr ma;S o o
In every case, we see that the travelling-wave basis, whose general form A’/?— — 1. When N is even, we can also have inversigo tr}?ug O L 2y
was written in (3.6), has a well-defined mathematical meaning (as an ! points of pairs of masses ns through the mid-
eigenbasis for H), providing a convenient division of the solutions into
oscillatory, critical and exponentially decreasing and i.ncre'asing- solutions. Jony={(N+2k+1-n)
It should be noted that each of these sets generates a time-invariant vector ’
subspace of the 2NV -dimensional space of motions of the lattice. .
| ie,m(n) =N+2k+1-n (moduloN), (4.2¢)

IvV. SYMMETRIES OF THE HOMOGENEOUS LATTICE

e can be alternatively defined as a system whose
r a subgroup of the group of permutations of
s subset being the dihedral group which we

A homogeneous lattic
description is invariant unde
its constituent elements, thi
introduce below.

IV.1 The dihedral group
We denote a given permutation P of the N elements of a system (num-

beredbyn = 1,2, .., N), through

P*{n} = {m(m}, (4.1

s
»

wit ing

elerze/;t;air\ngl?z 2t.hr3u§_hlo, 1, 2, ...,N/Z.— 1. In every case, there are 2V

pptat is.e;;il efining Dy- Inversxoq and multiplication of two ele-

ments | (4/5) : hy carrleq out through inversion and sequential applica-
.2). Such operations, as can be easily verified, yield another

element in D,,. Thi
N is set, hence, fo
general element of D,,. : rms a group. We shall denote by D the

IV.2 N X N representations of Dy

Th . o

]amC: fixhed.ral tra'nsformatlons (4.2) leave the neighbour relation in the

e Tu;lx;arlant, lsmce they rotate and reflect ‘rigidly’ the representing

: , y are also a/l the permutations with thi i

el fe e : is property. It is perhaps

y now that the dihedral t it i

Moy ( ' ransformations should leav

ynamics of the hon}ogeneous lattice invariant, since they transforn:
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a lattice —masses and springs; i.e., neighbour relations— into another latti-
ce indistinguishable dynamically from the first. To make this notign pre-
cise, we represent the dihedral group elements (4.2) through N X N
matrices which act on the lattice configuration N-vector f through permut-

ing its rows:

Frg = 6'1,1{(71') . (4.3)

Pt o P = ||PL ol s Fop
in (4.2a) are thus represented by a matrix R* with

ed on a subdiagonal which is k places to the lower
irculating matrix

The rotations R*

nonzero entries 1, plac
left of the main diagonal, counted modulo N, i.e., itisac
where the lower-left subdiagonal continues as an upper-right subdiagonal

N — k places up from the main one:

R = 116, 4ill - (4.42)

RO = 1 and R = (R')7. The inversions /, in (4.2b)

Clearly, RY = _
whose nonzero entries

are represented by sub-antidiagonal matrices I
are 1'sat n + n' = 2k and 2k + N, ie., strung from the (2k — 1, ) to

the (1, N — 2k — 1) positions which, since the matrices are anticirculating,

continue from the (N, 2k) to the (2k, N) positions, counted modulo N:

(4.4b)

Ik = H6n+n',?.t’<H

2¢) are represented by other anticirculat-
ing sub-antidiagonal matrices I with I'satn + n' = 2k + land 2k +
N + 1, ie., on sub-antidiagonals from the (N — k. 1) to the (1, N — k)
and the (N, N — k — 1) to the (N—-k—1,N) positions:

Lastly, for N even, the J in (4.

Jk = ”5n+n',2k+l ” . (44C)

The inversion and multiplication of two of these matrices yields the ma-
trix which represents the inverse and product of the corresponding gr‘?up
elements in D, . Note that all matrices P™ are real, unitary matrices, 1.€.,
ptp=1-= P P', where the dagger (1) indicates adjunction, that is,
transposition and conjugation. We shall write D for the general N X N
matrix representing the dihedral group element D € Dy - Finally, we shall

&3
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economize space by not distinguishing explicitely the group elements
from their matrix representatives, and refer to themasD € D,,.

IV.3 Mapping solutions into solutions

If we write C for any linear combination of the D-matrices, we can
state clearly the invariance of the homogeneous lattice dynamics as fol-
lows. If the configuration N-vector f(¢) is a solution to the equation of
mation of a homogeneous lattice equation (1.2), then C £(¢) is also a solu-
tion to the same equation.

The proof of this statement reduces to showing that C commutes with
the interaction matrix K, i.e., C K = KC. The similarity action of a per-
mutation matrix P on any matrix M asM = PMP ™! is to subject the
row and column entries of M to the same permutation which P effects

on the rows of the column vector f. Rotations RF perform M, >

Mn+ B P and hence translate (modulo V) the entries by & units"a'iong
the direction of the main diagonal. This leaves invariant all circulating
matrices, in particular, the circulating matrix K in (1.3). The I, invert
the rows and columns of M accross the (&, k) entry, while the Jk do the
same accross the midpoint between the (k, k) and (k + 1,k + 1)
entries. In particular, if M is a circulating matrix, the I, 'sand J, ’s have
the net effect of transposing M. Recalling that K is a symmetric circulat-
ing matrix, we have DK = KD for D € 0. Performing linear combina-
tion of the dihedral matrices D into C’s completes the proof.

The converse of the statement is also true, namely, that if some N XN
matrix C commutes with a symmetric circulating matrix K, the C must
be a linear combination of the 2V matrices D of the dihedral group D, .
The proof proceeds through noting that the circulation and symmetry
properties are equivalent to commutation with the rotation and inversion

representative matrices.
IV.4 The dihedral group ring and its representation

It should be pointed out that under the additional vector-space opera-
tion of linear combination, the set of dihedral matrices (4.4) are not
linearly independent: When NV is odd,

N-1 N.—l
o= YR
k=0 k=0

is a matrix filled with 1’s, while when NV is even,

4
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a lattice —masses and springs; i.e., neighbour relations— into another latti-
ce indistinguishable dynamically from the first. To make this notiqn pre-
cise, we represent the dihedral group elements (4.2) through N' X N
matrices which act on the lattice configuration N-vector f through permut-

ing its rows:

Proe BT = IPLAl . PLy = 8y \:3)

The rotations R¥ in (4.2a) are thus represented by a matrix R¥ with
nonzero entries 1, placed on a subdiagonal which is k places to the lower
left of the main diagonal, counted modulo N, i.e., itisa circulating matrix
where the lower-left subdiagonal continues as an upper-right subdiagonal

N — k places up from the main one:

R = 16, 1kl - (4.4a)

Clearly, RY = R® = 1 and R™! = (R')7!. The inversions [, in (4.2D)
are represented by sub-antidiagonal matrices I, whose nonzero entries
are 1'sat n + n' = 2k and 2k + N, i.e., strung from the (2k — 1, 1) to
the (1, N — 2k — 1) positions which, since the matrices are anticirculating,
continue from the (N, 2k) to the (2k, V) positions, counted modulo N:

(4.4b)

Ik = l|6n+n',‘2k|l g

Lastly, for NV even, the J, in (4.2¢) are represented by other anticirculat-
ing sub-antidiagonal matrices J with I'satn + n' = 2k + land 2k +
N 4+ 1, ie., on sub-antidiagonals from the (N — k. 1) to the (I, N — k)
and the (N, N— k — 1) tothe (N — k — 1, N) positions:

(4.4¢)

£ = 18 ppm’ 2k .

The inversion and multiplication of two of these matrices yields the ma-
trix which represents the inverse and product of the corresponding group
elements in Dy . Note that all matrices P™ are real, unitary matrices, i.e.,
pt p =1 = PP, where the dagger (1) indicates adjunction, that is,
transposition and conjugation. We shall write D for the general N X N
matrix representing the dihedral group elementD € Dy, . Finally, we shall
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economize space by not distinguishing explicitely the group elements
from their matrix representatives, and refer to themas D € DN.

1V.3 Mapping solutions into solutions

If we write C for any linear combination of the D-matrices, we can
state clearly the invariance of the homogeneous lattice dynamics as fol-
lows. If the configuration N-vector f(¢) is a solution to the equation of
mation of a homogeneous lattice equation (1.2), then C f(¢) is also a solu-
tion to the same equation.

The proof of this statement reduces to showing that C commutes with
the interaction matrix K, i.e., C K = KC. The similarity action of a per-
mutation matrix P on any matrix M as M = PMP™! is to subject the
row and column entries of M to the same permutation which P effects
on the rows of the column vector f. Rotations R¥ perform M, —
M, . Bomta k and hence translate (modulo V) the entries by & unitsn'a'iong
the direction of the main diagonal. This leaves invariant all circulating
matrices, in particular, the circulating matrix K in (1.3). The I, invert
the rows and columns of M accross the (k, k) entry, while the J kdo the
same accross the midpoint between the (k, k) and (k + lfk + 1)
entries. In particular, if M is a circulating matrix, the Ik s and J,’s have
the net effect of transposing M. Recalling that K is a symmetric l::irculat-
ing matrix, we have DK = KD for D € D, Performing linear combina-
tion of the dihedral matrices D into C’s completes the proof. .

The converse of the statement is also true, namely, that if some N X N
matrix C commutes with a symmetric circulating matrix K, the C must
be a linear combination of the 2V matrices D of the dihedral group D,,.
The proof proceeds through noting that the circulation and symmetlxyy
properties are equivalent to commutation with the rotation and inversion
representative matrices.

IV.4 The dihedral group ring and its representation

' It should be pointed out that under the additional vector-space opera-
tion of linear combination, the set of dihedral matrices (4.4) are not
linearly independent: When A is odd,

N-1 N:-l
> L= D R

k=0 k=20

is a matrix filled with 1’s, while when /V is even,

4
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Nj2-1 N-1
‘ Z A, —3) = Z (—UkRk
k=0 k=0

)’s in alternate checker-board positions. These
matrices are both circulating and anticirculating and commute with all
linear combinations C of D’s representing Dy The described linear vector
space of circulating (Zx¢k R¥) plus anticirculating (Zga ¥ or Zpa I +
Tiby Jp for N odd or even) matrices has thus dimension 2N — 1 for
N odd and 2N — 2 for N even. We shall call this vector space Cy -

The elements of Cy are subject to closed operations of multiplication
and linear combination, and contain the unit matrix. We see thus that Cy
has the structure of a ring with identity. This object can also be defined,
equivalently, as the factor ring of the dihedral group ring by a central
subring. The latter has one element, Z, RF - 2y I when N is odd;
when ‘N is even, it has two elements, Z, RF — I, + Jk) and
T (-1F R — Z, (G = Jp).

Had we directed our paper t
-invariant interaction, we would have arrive

is filled with 1’s and (-1

o the search for the most general Cp
d at the homogeneous lattice

interaction.

IV.5 The full group of symmetries of the interaction operator

We saw above that C f(r) is a C-transformed solution of the lattice
obtained from f(#). It is obtained through applying the same element C
of Cy on the elongation components fn(z‘) = fn(t) and on the momentum
components Mf (1) = fN+"(t). This is due —as we remarked briefly

before— to the property

(4.5

c o
C,G(f) = G(Cy»  Cu = ., CECy
0 C

Under the (temporary) assumption that the positions and momenta
undergo the same transformation, we now describe the action of this
dihedral group Dy on the travelling wave basis (3.6)-(3.7). The representa-
tion of the elements D of Dy in this basis is obtained applying to (4.4)

the similarity transformation X in (3.3b)

D O i
< ) D=F!DF, DETDy . (46)
0 D
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I'he Fourier transform of t} i 4.4
1e dil i i
t tary matrices [8] thedral representation matrices (4.4) are

R = , - ; :
18, exp Qrikm/N)|| = R¥*1 = RET (4.7a)
i = 6 ' [ 1 1
e = W8y o exp Gnikm/Mll = T, = 1,7 . (4.70)
L = W 12k jt=1
18, 4mr0 €xp (2mil2k + 1m/N)l| = .0 = Iv-k oy o (470)

wher T |
. uenif\tfamlys égzi\ﬁ:s;tacise of M. Eqs. (4.7) provide a representation of
b;;vsis o 0 e nt to the representation afforded by (4.4). In the
iyl T.he rotationls t;inkt }Vhy (4.6) commutes with the diagonal G(¢f) in
F o O P end in (4.7&) are diagonal, while the inversions I, and
X : nd (4.7¢) mix degenerate eigenvalues. In th i
wave basis, moreover, we see t limitati ‘ 'e .
approach: two N X N bl woylm{tatlons of our geometric-symmetry
s tisses B ocks of D, 1‘n (4.6) represent the same element
2 iriees commutig gf(?l;lp. In s.earchmg_in this basis for all 2N X 2N
oF (4GS ma e cleg \lmt the dlggonal G(t), the upper and lower block
value space may b ar YbFaken as independent, and moreover, each eigen-
iF s o : y be su ject to an arbitrary linear combination GL(2, R)
! Sing]eliznva ue is doubly degenerate: By = My _ o OF GL(1,R) if it
o occurp(l:soi;’ :;:6: N evfen, My g Furthermore, if accidental degener-
= e ?\je of pth-neighbour interaction lattices, i.e.,
solu’?ié; splace assi) . dﬁ my), then the four- (or more-) dimensional
il o (e FCl)alg to that frequency may be subject to arbitrary
becon’les e ger Tear transformations. Lastly, if some eigenvalue
g the shraohins ;;,Fth; 0, the c'orresponding solutions become critical
Instead of GLZR) ;ommutmg group of matrices changes abruptly.
bt ’mat»'ve ave S,, the three-parameter solvable group of
obpe wherz o r;[c.es. Since we have not insisted on the critical
(3‘3)»] e shal 1(1;3"3 ing wave transformation X becomes singular [Egs.
phené’menon Fg ;s over the exact description of this group contraction
. Further, we shall also avoid detailing the accidental degener-

acy cases, which do not occur in ti i i
' 1e ordin -nei i i
Klein-Gordon or Helmholtz cases. ey (et nmgh‘bour R

IV.6 Lie algebras vs rings

W s IE)
e have thus the complete symmetry group found in Ref. 2, where

4
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the corresponding Lie algebra is also analyzed. The point we want to
make here is that the said algebra representations and its applications in
the next section are equivalently described through a ring structure
associated to the Cy ring, which represents phase-space transformation
in the lattice equation of motion. To this end we define

_ cC o 0 O )
c” = CT = _} s C=FCF ; C,C' € Cy . (4.8)
0 O o C

When the é, (E'_are the D, group representation matrices D in (4.7), the
corresponding D™ provide a JN X 2N representation of the direct pro-
duct group Dy @ Dy> the first and second factors acting on right- and
left-travelling waves. A larger symme
equation (1.2) is thus D'A’, ® Dy which contains the ‘geometric’ dihedral
Dy as its diagonal subgroup (Dy @ Dy)a and is contained in the full
symmetry group of subsection IV.5. Thence the subindex ‘d’ in (4.6).
Henceforth, we shall denote by D the 2NV X 2N matrix with two in-
dependent DN—blocks.

The elongation-and-momentum basis representation of (4.8) can be
found through C = X C X™!. This matrix will in general mix the elonga-
tion and momentum components of f(¢), as canonical transformations do.
We shall not write out the 4V elements Dof Dy © Dy in this representa-
tion, since they do not reduce beyond the block form of X and their
explicit expression is not needed in the following results. This underlines

the fact that the description of the symmetries of the homogeneous lattice

is more transparent in the travelling wave basis than in the fundamental

solution or normal mode bases. _
_ Under linear combination, the 4N matrices (4.8) obtained letting D and
D' range independently over (4.7) generate a linear vector space and ring
Cy © Cy of dimension 2(2N — 1) for N odd, and 2(2N — 2) for N even.
This space will be identified in the next section with the space of invariant
quadratic forms, related to constants of the motion. In preparation for
this we introduce a more convenient basis for Cy @ Cy': Matrices with a

single nonzero element.

IV.7 A basis for the ring Cyy © Cy

Out of the rotations (4.7a) we define the N X N matrices

try group of the homogeneous lattice -
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_ N-1
Ey = W8pmbmell = N7V 30 FoR', 2=0,1,..,N-1, (4.9a)
k=0 ' '

counting indices modulo N. Out of the inversions (4.7b) and (4.7¢)

AE = ”5m+m',05m,2”
1 N-1
-1/2 T
N~V z Fsz,zka , Nodd , e=1,2,...,N—1
k=0 ’
_ Neven
| /2o (4.9b)
-1/2 7 1
N Z (F“,(Ik +FQ'2k+1Jk), e=1,2,..,N—1

k=0

2 #F NJ2 .

As before, we note that A, = E A F

ore, o and, for N even, Ay/, = E W
. - . . j=d = 4 o N ' e
?‘eﬁlne E, and A, as in (4.8) wit Dand D’ being (4.9a) and (4.9b) rléspec-
ively. ’

I'V.8 Time inversions

The transformation of the temporal variable in the lattice equation of
motion has been thus far generated by H and finite transformations b
G(1). \.the‘n damping is absent, the equation of motion, being of seconzil
order m_txme, is also invariant under time inversions ¢ 6’ —t. In the space
of solutions this is a reversal of the momentum sign which can bf re-
presented through the 2V X 2N matrix

1 o0
T=< ) TH = —HT , TG() = G(-NT .

0 (4.102)
Correspondingly, in the travelling-wave basis,
T=X!'TX = <O 1) (4.10b)
1 0

Time reve i i
rsal thus exch’anges left- and right-travelling waves and, under
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similarity transformation, exchanges the two factors of D; e Dy and of

v e C
IV.9 Lie algebras vs rings, conclusion

We would like to offer here a comment upon the construction of finite
discrete vs continuous symmetry groups in finite discrete lattice sy;tems.
We draw the reader’s attention again to the fact that in (4.5) we did not
direct our search towards finding the most general transformation C' com-
muting with the diagonal é(f) given in (3.5), as in Ref. 10. The point tp
recognize is that the 2N X 2N representations of the_'eleme*r}ts of this
group and of its Lie algebra are contained in ourring Cp; © Cro fPr theyr
are but (in general non-integer) powers and logarithms of the 2]\/ X 2N
representations of the discrete D; ® D; group representat'lons, a'nd
hence within its group ring —modulo the identifications which define
C; A e ‘ ‘ ‘
Comp‘a"ring the count of parameters in the full symmetry group S in
Ref. 2 with the dimension of Cy © Cy» we see that thfey are equal.
Moreover, a basis for the Lie algebra of S is provided precisely by. (4.9):
The E‘;’ which will be detailed in the next section, gegirate translatlox.is of
the single (£, =)-travelling wave, while the A'; and Ay _ generate linear
combinations of the (2, =) and (N — Q, =) travelling waves.

[t is perhaps a moot point to argue which approach is preferable: (a)
the construction of § and its Lie algebra as followed in Ref. 2, oi(b) thf
equivalent construction of the phase-space discrete S)fmmetry Dy © Dy
and its group ring (modulo the identifications stemming from the 2N X
2N representation and) leading to C; @ Cy as done here.‘ In tl}e 'latter,
we do not leave the realm of discrete groups in the description of discrete
e former uses Lie tecniques familiar from continuous
systems. This equivalence seems to imply that the analysis of pond;—
g;merate, discrete, finite linear systems may be done without involving Lie
Zechniques at all, but in the framework of geometric symmetr.y group's in
the travelling-wave basis. The latter become Lie groups in their own right
as we let /\«7 — o to describe continuous systems, as will be shown in
section VI. The question of more-than-two-level degeneracies in.discrete
systems may help to explain the corresponding features in certain quan-
_but must be shelved for further analysis elsewhere.

systems, while ti

tum systems [9]

V. INVARIANT QUADRATIC FORMS

iguration of a lattice (0) which determines

The initial phase-space conf ‘
f(¢) consists of 2NV in general

uniquely the subsquent time evolution

o-—-,_—. -
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complex numbers. Certain quadratic functions of the components of f(¢),
such as the energy are of importance because (for the undamped cases)
they are independent of time, i.e., constants of the motion. Being quadra-
tic, as we shall see, they also define inner products on the solution space,
which can be restricted to be positive. We shall be interested in quadratic
forms C(f, g), linear in the second argument, and linear or antilinear in the
first, i.e., bilinear or sesquilinear forms. The latter are widely used in the
construction of complex Hilbert spaces since when the form is positive
[C(f,f) = Oforf ¥ 0] anorm can be defined out of the inner product.
For every f(t) we expect to find no more than 2V functionally indepen-
dent complex constants of the motion.

V.1 Time-invariant quadratic forms

In proposing a set of quadratic forms, bilinear involving £7(¢) and g(1),
or sesquilinear involving ft (¢) and g(¢) which are independent of the time
variable, the key element is to realize that in the travelling-wave basis, and
only there, the time evolution of the components is simply the multiplica-
tion by an exponential factor, exp(iw; t) for right-moving waves, and
expiw, 1) for left-moving ones. [The consideration of damping in the
lattice, we saw in Subsect. II1.7 is a minor variant of the undamped cases;
we shall consider only the latter for most of this section.]

When damping is absent, then w?® = fw? where w; may be real
(oscillatory solutions), pure imaginary (exponential solutions) or zero (cri-
tical solutions). If we denote by (F) the adjunction (1) or transposition
(7) involution, the most general sesquilinear or bilinear form can be writ-
ten as

Cotf 9 = TOTa0 = T OB (TINFTO) . (5.1)

In order that this be time-independent for all?(r) and E([) in the solution
space of the lattice equation of motion, it is necessary and sufficient that
C be such that

G'()CG(r) =T 1ie, HHC+CH=0 (5.2)

The 2N X 2N matrices C satisfying (5.2) form a linear vector space
which we proceed to identify —as the notation suggests— with C; ® C;;
We have at our disposition the basis (4.9) and T in (4.11). Following the
analysis made in section III, we present in detail the two particular cases

4
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which will inform us of the typical structure of the most general case. The

results are summarized in Table 1. First:

V.2 Klein-Gordon sesquilinear forms

The discrete Klein-Gordon equation has only oscillatory solutions:
W = (wfn y* = zw’ . The invariant sesquilinear (S-) forms are obtain-
ing wave content of a lattice state vector

m
ed by pairing one (2, =) travell
f the same (£, =) travelling wave con-

g(t) with the complex conjugate O
tent of another state vector (1), as

%@ﬂﬁﬂ)z?--iﬁz?;jﬂ==U%@@(%ﬂr : (5.32)
AS(Q _‘)(f, g = ?—T K‘;g = T;\ﬁ—g‘n-gg = [AS(N_Q';:)(Q: H1* . (5.3b)
s since

We have ommited the time argument of the component function

the expressions are time independent.

V.3 Klein-Gordon bilinear forms

(B-) forms are obtained by pairing one (L, =)

The invariant bilinear
te one, as

travelling wave content with a second (&, =) opposi

(5.42)

EB(Q“:)(f, g) = TT—E—;’ 19 = fQﬁ 9o — EB(Q,-,) (g, 1)

AB(Q_,:) (f, g) = = Ti_va-g‘tv_ Q, % = AB(N— Q,av)(g’ f) . (54b)

V.4 Incompleteness of the set of quadratic forms

ndent sesquilinear or bilinear forms is the dimen-

sion of the complex vector space Cy © Cy> namely 4N — 2 for N odd, or
4N — 4 when N is even. Since f(t) and g(f) are together defined by 4N
complex constants, this means that two or four (for N odd or even) com-
plex quantities are lost in building quadratic forms. There are gverall com-
plex multiplicative constants: if we let f, N (9 B ag (a_)* fg,#(t) and
g, L) B (a_‘,)“l —g_g . (1), none of the sesquilinear forms (5.3) are affect-
ed. These a_ are two Q-igdependent complex constants missed. In addi-
tion, when N is even, fq__.(l) =g (—l)g(b_)" fg‘__(t) and EQ'__(I) -

The number of indepe

AN s
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Metric matrices for the
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(5.15b,¢) in (5.16)
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be multiplied by mutually inverse complex contants. ie., f, () =
d:—tfsz,a(t)’ gg,cz
N is"even, we can complete thel
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(=D ) g, () provide for the last two missing constants in sesqui-

or bilinear forms, right- and left-moving partial waves can

(ty = (d_ )" g, (1) without affecting the forms; when
= Q, = X R 0
ist as above introducing a factor (—1)".

V.5 A basis of invariant forms

The physical meaning of these forms can be clarified in the normal

mode basis, using

(5.5)

hefo = 7 MY [wihy + ihg 1",

where () is complex conjugation (*) for S-forms and the identity for B-
forms. Replacing (5.5) in (5.3a) and (5.4a) we find [referring to S or B
through (¥) ] the following recognizable linear combinations:

EGe(f, @) = [Egye T Emenlf 9

l e z ~ = & + +
. = SMI(wp) e & + Fo 8, = Ee (@ D (5.6a)
E(t)g(f: g) = [E(¢)(Q,_,) _E(:)(Qr—)](f) g)
= Iy WS (f 8y — Faga) = HiEg(f, 9lF . (5.6b)

2

In a similar way, out of the A-quantities in (5.3b) and (5.4b), we define

Afrye(f, @) = {(5.63, b) with Ev A, €,78v_g}- (5.6¢)

The E* and A* have the general form of energies [as recall M(w;:)2
uQ], while £~ and A ~ have the form of angular momenta. See Table L.

V.6 Positivity of energies and angular momenta

g in (5.6) we see that EE'Q (f, f) = 0 is positive. By con-

Setting f = : :
trast Eg, (f, ) 2 0 when f consists entirely of right-moving waves, Wh.llﬁ
ES, (f, f') < 0 when f consists entirely of left-moving waves. When setting

'y;’:o

"’."‘"
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f = g, the E(;)Q(f, f) are seen to be the 2th normal mode energies of the
lattice state f(r). Indeed, the total energy

N
I . . ug s 3
E(#)(f: ) = Z E(Z)Q(f, f) = 5 f"Kf + ‘2—Mf*f , (5.7)

=1

is the potential plus kinetic energy of the lattice moving as described by
(1), Eg isa (real) sesquilinear form, while EB is bilinear and, for complex
f(t), is in general complex itself. Next (for f = g) ES",;Z represents the
angular momentum of the £th partial wave oscillator in the two real di-
mensions Re £, and Im f,; EB_ , on the other hand, is identically zero.
Together, the 1%’5 provide for 2N real constants of the motion. Regarding
the interpretation of the A’s we must remember that the 2th and (N — £)th
modes, when distinct, have degenerate frequencies and hence rotations in
the plane of these two modes is possible; the 4*’s provide the cross terms
for energies and angular momenta under /4 rotations. When f = g, they
are not all independent, but [AE;)QF = Ay n-o and [A(;)Q]* =
i id ;) y_q as can be ascertained from (5.3b) and (5.4b). In letting £
range from 1 to (W—1)/2 or Nj2 — 1 for N odd or even, we obtain
double that number of complex constants of the motion. The total num-
ber of real quadratic constants of the motion is therefore 4N — 2 or
4N — 4 for N odd or even. =

V.7 Incompleteness of quadratic constants of the motion

The ‘missing’ quadratic constants of the motion stem from overall
phases, as in the discussion following Eq. (5.4). For the sesquilinear cons-
tants: two phases, one multiplying right and one multiplying left-travell-
ing waves [plus, if MV is even, another two such phases times (—=1)%). These
transformations are not registered by the set of quadratic constants of
the motion, their location and classification in the travelling-wave basis
has been reasonably straightforward, as they can all be represented by dia-
gonal matrices commuting with those present in (5.3) and (5.4). In the
normal mode or elongation-momentum description, they will in general
mix configuration and momentum components, and are none too easy to
recognize.

V.8 Realsolutions

As a special restriction, we should examine the constants of the motion
in the case when the initial elongations and momenta in the lattice are

4
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real. Since the evolution operator (2.5) is real, so will be the ensuing lat-
tice solutions. Since for f real, f,, = fN~ m [this is due to the fact that
= F* = FE mal and similarly for the time derivatives, one

an “im,N-n -

obtains 7. = ?N— g s WE conclude thus that for real initial conditions
the quadratic forms (5.6) will coalesce as [Ci*)g(f, f)l* = 2Cy N - o (fs ),
halving the total number of constants of the motion to IN—1lor2N =2
for N odd or even. The missing constants are now related to overall phases
and multiplication constants on the travelling waves which respect the rela-
tion f' . = ?N— e 1€, In terms of the phases used in Subsect. V.4,
as = a_ and, if N even, b: = b,_. The effect of these transformations
which leave all quadratic constants of the motion unaltered is to rotate all

the w;f; - f, planes by the same (free) angle, ie., a time translation.

When N is even, the extra free variable (which is not connected with the
identity transformation) involves time translation followed by the lattice
rotation by m. The latter is the only non-trivial central element of the
dihedral group, and is present only for N even. Also, sesquilinear and bili- '

near constant now coalesce through

+ o4t - — - _ g+ _ +
Ego, = Asn-o Epe =Asn-e =0, Ape =~ Ego -

We have been occupied in classifying and describing the constants of
the motion for the discrete Klein-Gordon equation in some detail. As in
section I1I, the wave and Helmholtz cases will now introduce exponential

and perhaps critical solutions with imaginary and zero frequencies.

V.9 The wave equation case and critical solutions

The undamped wave equation is described in letting the constant k* of
the Klein-Gordon equation tend to zero from positive values. The effect
of this, as wj = twg —~> 0 isto make the m = 0 modes and travelling
waves go critical, as shown in Eq. (3.8). The sesquilinear and bilinear in-
variant forms (5.3), (5.4) or (5.6) also have a smooth limit, and only the
9 = 0 ones need be examined. Of these, we have only E’s, and these are

+ 1 2 s, 1 - ~ »
Elolf, @) = 3Mode = 3 MNT (E (8 (5.8a)

Egyo(f,9) = 0. (5.8b)

.
P e ARy

e
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Since the Klein-Gordon spring binding each mass to equilibrium has
dissappeared, only the kinetic energy of the critical £ = 0 mode remains
in (5.8a), while we loose the quadratic form (5.8b). The number of real
quadratic constants of the motion (for f = g) now drops to 4N — 4 for
N odd and 4N — 6 for N even. The two new missing quadratic constants
are related to the real and imaginary parts of fo = N7Y/2 Ef , the average
elongation of the masses. A lattice all of whose masses have t;:aen displaced
by the same amount is indistinguishable from the original one through its
quadratic forms alone. We thus have now the extra invariance of the set of |
cqnstants under the addition f(t) b f(t) + ¢ where ¢ is an N-vector all
of whose components are ¢. The origin of this property is the fact that for
the wave equation interaction operator, k¢ = O i.e. Z K , = 0. The
only interaction matrices with a nonzero sum over columr?s (Z?nd rows) are
those with k, # 0. Multiplication of the components of f(t) by phases

accounts for the rest of the invariances as described before.
When the elongations and momenta are real, again the number of in-

qependent nonzero quadratic constants of the motion is halved to 2NV — 2
for N odd and 2NV — 3 for N even.

V.10 The Helmholtz case

The discrete Helmholtz equation presents a major difference in that in
general there will be real as well as pure imaginary values of «w?¢ . These
m

are separated by a critical value m,, for which 0 = u,, = K? —

4 sin?(wm_/N). Whether or not m, isactually aninteger determines whether
or not critical solutions (3.8) exist among the solutions to a particular
value of k? in the Helmholtz equation. We shall assume for simplicity
that they do not. In any case, [m| < |m.| (all quantitics modulo N in
the basic Brillouin range) characterize oscillating solutions for which
everything we stated for the Klein-Gordon quadratic constants of the
motion continues to hold. The range |nm,| < |m| < P(N) corresponds
to exponential solutions, we must now account for the associated qua-
dratic invariants (5.3)-(5.4). Since for these ?Q ()= exp(twgft)?E (0),
from (2.3b), we see that both sesquilinear and bilinear invariaht’sumay
be obtained as in (5.4), i.e., through pairing left- and right-‘travelling’
waves of the same mode. For the bilinear forms we have again (5.4), but

for the sesquilinear forms, we have
Esqu( @) = TE;TE = Teufon = [Esem(@ DI, (5.92)

AS(Q_s)(f) g) = Tt K;TE = —f—;aiv-q,- = [AS(N..Q_--)(g» )]* . (5.99)
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The corresponding expressions for (5.6) in terms of normal-mode com-
ponents are

Ego(f,9) = [Ese-y T Eseeo)lf; 9)
= S Ml T - F1R) = (E5e(e D) (5.100)

E5o(f,9) = [Eggoy = Es@earf; 9
= SMwy(td, —FEd) = ~lEe(e DT, (5.100)
A§o(f, @) = {(5.10a,b) with E»A, & ™ &v o} - (5.10¢)

See Table I.
The count of independent and ‘missing’ quadratic invariants is the same

as before, and so is the restriction to real initial conditions.

V.11 “Total energy’ in the Helmholtz case

It should be noted that in general the construction of a sesquilinear
‘total energy’ is possible as a sum of the E_;’Q over £, but, since we should
be summing over both the oscillating and exponential modes, the last
equality in (5.7) will not carry over to this case. Instead, it will consist
of a sum over & for the positive values of y, (oscillating solutions) minus
a sum over & for the negative values of u, (exponential solutions). The
reconstitution of the interaction matrix K in the elongation-momentum
basis, is therefore not possible. We may (and shall, in the next section)
sum only over the oscillating solutions and obtain —of course— an in-
variant quadratic form.

The presence of critical solutions for a certain m, set (+ [m| and
-|m, ) puts the complex constants E(})_mc(f, g) to zero. This is now due to
the invariance of the remaining set under addition f(t) = f(r) + dme)
where ¢ is a vector with components ci"® = ¢ Fp m, (forany com-
plex constant ¢("¢)). Again, the origin of this property is that Kc®*™e) = 0

ie., %K,,,, IF,,':mc =0.
V.12 The damped wave equation case

There is little new to be added for the damped wave equation, as the

]
Ly [
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procedure for oscillating and exponential solutions follows as for the
Helmholtz equation, except that the ranges are reversed, i.e., the former
may exist for [2] > [m,] and the latter exist for |2] < |m,|. The time-
dependent exponents will not cancel out completely, however, and all
‘constants of the motion’ must decay with a factor of exp (—2T¢).

V.13 Homogeneous and isotropic quadratic forms

Having accounted for all constants of the motion obtainable from
quadratic forms, we can now propose the criterion that, since the lattice
dynamics is 11.1var1ant under the g‘e:ometric Dy and the D; ® U;, group of
phase-space dihedral transformations, the quadratic forms (5.1) which are
invariant under at least the first group,

C(::)(f, 9) = C(:)(Df, Dg), D €Dy = (Dy © D;)d s (S.11a)

should be especially important. Their value will not depend on which
system element is counted as the ‘origin’ # = 0 nor on the direction in
which the counting is made. These homogeneous and isotropic (h & i)
quadratic forms will be determined by those C satisfying

DCD=¢C (5.11b)

’

'where D belongs to D, or, for generality, to D; ® Dy O Dy- The ad-
junction and transposition properties of the two N X N blocks of D are
given in (4.7) while the C matrices for the sesquilinear and bilinear forms
appear in (5.3), (5.4), (5.6), and (5.9). The analysis of all possibilities
leads to the following results for oscillating solutions:

D O '
(Ese + Esn_o)(f, @) h&i under < >G Dy Dy ,  (5.12a)
. 0 D
Ago(f, 9) not h&i under any Dy COy ®Dy , (5.12b)

D 0
[E5q +.E§_N_Q](f, g) h&i under ( )E (D5 ® Dy); , (5.132)

0 1,DI;!
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D 0
e +Apn-o) (F, 9 h&i under < )E (Dy @ Dy)a - (5.13b)
0 D

In Helmholtz-type equations where exponential solutions exist, the

sesquilinear forms are built as in (5.9), pairing right- and left-moving

waves. This leads to the following results:

D O
[E_;Q + E;N_Q](f, g) h&iunder < >€ Oy © Dy )a > (5.14a)
0 D

D 0

(A5e + Asy-o(f, 9 h&i under <
0 1,DI,

nd on the oscillatory or exponential nature of

Bilinear forms do not depe
by (5.13) for all cases. See

the solutions and their hé&i properties are given

table I.

V.14 Homogeneity and isotropy in time

So much for the h&i properties in the lattice space. Regarding homoge-
neity in time, the quadratic invariants were built with (5.2) as their defin-
ing property; this is the direct analogue of (5.9) for time translations.
Time inversions are produced through T given in (4.10). In the travelling-
wave basis this corresponds to the exchange of right- and left-travelling
waves. The C (f, g) will be invariant, as energies are, but the C~(f, g) will
change sign, as angular momenta do.

The panorama oOn homogeneous an
constants of the motion thus configures as follows.

d isotropic quadratic forms and

V.15 Klein-Gordon sesquilinear h&i forms

s only, as the discrete Klein-
¥ invariant sesquilinear forms
through (5.12a),

Systems exhibiting oscillatory solution
Gordon lattice, will have full (D; ® Dl’v‘
(5.12a). The most general form can be written [regressing
(5.6), and (1.5) for f = F!f] asa linear combination

P(N),N

cXOt, 9 = 3 EES, + Egy o), @)

o=t g=1

>€<D§ 2py), . (5.14b)
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B | —

N N
MY Y (M=) LM (= nNgy
n=1 n'=1

+(frg, — fre M (n—n")}
P A
C e MY M g
= ZME L) : (5.15a)
—MA MK g

5 N
ME (k) = N7V S &g exp (—2mike/N)

=1

where

= NVig = M Dpagn > (5.15D)
" N
MP(k) = N1 3D (w§)?é, exp (—2mike/N)
g=1
=M N Keh), = M) pen . (5.150)
P N
M (k) = iNTV D wg§ w§égexp (—2mk2/N)
e=1
= iIN"P*e), = M) psin »  (5.15d)
wherg ¢t is the inverse Fourier transform of al— lléz ||, and v the inverse
Fourier transform of a ‘frequency’ vector v = llwg Il The components of

these vectors have been extended from (5.15), where £ = 1,2,...,P(N),N
to the range £ = 1, 2, ..., N through defining ¢, _, = ¢, and thus the,c"
have the same property: ci = oy_ g B8 ¢t = 1,c*. Finally, as b=
I,0, we also have v = Iyv. The matrix K in (5.15¢c) is the interaction
matr%x of the lattice, Eq. (1.3), given through the symmetric circulating
matrix ijv =K,_p = MN'(v=*v),_ ., where ‘¢’ means the finite
convolution. The c* -part of (5.15) is a linear combination of terms of
) .
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energy type while the ¢~ -part is of angular-momentum type. The total
number of dimensions in the space of Klein-Gordon invariant quadratic

forms is thus N + 1 or N + 2 for N odd or even.

V.16 Klein-Gordon h&i bilinear forms

No bilinear forms are invariant under the full phase-space symmetry
, but (5.13b) and (5.13a) are invariant under the geo-
metric diagonal and ‘inverted-diagonal’ subgroups. If we demand that the
forms be invariant at least under the geometric symmetry group, we may
keep (5.13b), ie., we may have the h&i bilinear form (under the Dy

subgroup)

group D‘A} ® D;

: POON @y 40 o
Cé}\G)(f, g) Z Cq [AB,Q + AB,N .Q](f, g)
=1

g%

N N
= ",lj’ﬁ;f Z Z {f:nqu (n— n')g'” +an‘p (n — n’)gn.

n=1 n'=1

+ (fng'n’ - fng,, )AMA (n— n')}

LM MY
= = M) . (5.16)
2 M MY/ \g

This equals the last expression in (5.15a) with the MX, M? and M? as
given by (5.15b)}(5.154d). The only change of (5.16) with respect to
(5.15a) consists in that we write the components of f instead of those

of f*.

V.17 Helmholtz h&i quadratic forms

both oscillatory and exponential solutions separat-

Systems possessing
ot coincide

ed by a value m, of the normal-mode index (which does n
with an integer, so that critical modes be absent) will have 2[m.] + 1
Do ® DT -invariant sesquilinear forms associated to the oscillatory

solutions (5.12a), and N + 1 or N + 2 minus that number of sesqui-
linear forms (5.14a), corresponding to the exponential solutions (for N

n b ) g AN

f
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odd or even). These forms will be invariant only under the geometric-

-invariance subgroup Dy, = (D @ Dy )y-
In the same way as (5.15) and (5.16) we may now write, instead of

the middle expression in (5.15a),

ENES, + ESn )£, 9)

=2 =

g=¢% [SZl<mC

+ 2 &P E + By, g)] . (5.17a)

121>m,

and the last expression in the same equation retains form when we de-
fine the corresponding M’s as

M)y = N7? < S+

j2l<m,  1Qi>m,

> ¢ exp (—2milk/N)

= NVigp | (5.17v)
ME(k) = N—x< Z (f)? + Z (w§)2> Cqexp (—2mifk[N) ,  (5.17¢)
[j<m, 121> m,
MA(k) = iN“I( S o - Zw{j) ¢, exp (=2mik/N)
121 <m, JIQI>mC
= iNtTvxc), . (5.174)

Equations (5.17b) and (5.17d) are the same as (5.15b) and (5.15d), the
latter pair with the novelty that v = llw? Il is a vector with complex com-
ponents [recall in (2.3b) that w{ = —iwf, w¢ real, for [2] > m_]. Equa-
tion (5.17¢) is different, however: the sum Zlfzvzl(o)g)2 ... for the Klein-
Gordon case is here Egz i Iwélz... and hence no longer expressible simply
as ~ (K c*)k, as in (5.15¢). We noted before that the oscillatory-solution
part of the sum in (5.17) is invariant under Dy ® Dy while the exponen-
tial-solution part has only invariance under the geometric dihedral trans-

formations in (D © Dyl If c* is such that ¢; = 0 for [2] > m,,

4

P B
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the corresponding sesquilinear form (5.17a) will have the larger invariance
group.

Regarding bilinear forms invariant at least under Dy @ Dydas the
construction (5.16), as for the Klein-Gordon case, applies also for the

Helmholtz case:

c, ) = ¢*9(,q) . (5.18)

These results are summarized in table I.

V.18 Positivity revisited

We should examine the positivity properties of the inner products
defined through the h&i invariant forms. If ¢t in (5.15b)-(5.15d) and
(5.17b)-(5.17d) has positive components (5,2+ = 0), then, as also (w:;)2 >0
12] < m, and (wg)? > 0, 12] > m,, it follows that the vectors
X (k) and WMF (k)| —equivalent to circulating matricesas M, . =
M*'(n—n')— are positive definite [i.e., ann’h;j”r;,n‘hn' > 0 for all
In I]. The c*-part of the sesquilinear and bilinear invariants (5.15)-
(5.18) thus give rise to positive definite inner products. Recall the discus-
sion on this point following Egs. (5.3) and (5.7). By the same token, if
¢, > 0, we recall that ES"Q(f, f)y are = 0, or < O, for f’s consisting
entirely of right- or left-moving waves, i.e., of functions of the type
expi(wfn t — 2mmn/N) or expi(—wfn t — 2mmn/N). In the theory of the (con-
tinuous) Klein-Gordon equation, these are the positive- or negative-
energy solutions [11] £/h = w° or E/h = —w°®, having identified 2nmn/N =
h™!px and conjugated the basis functions.

To sum up: Positive (P) sesquilinear h&i forms are obtained for all cases
as energy-like invariants (with summands f,’;‘gn and f,g,) with the c; =
C:;-_,, for parameters involving the absolute value of the interaction
matrix eigenvalues. Positive/negative (P/N) sesquilinear h&i forms are
obtained for all cases as angular-momentum-like invariants (with sum-
mands f,fg'n, —f:gn,) with the ¢ = ¢y _, for parameters, involving the
oscillatory or exponential solution frequencies, for the subspaces of right-
moving (positive-energy)/left-moving (negative-energy) waves. There are
(N + 1)/2 or (N + 2)/2, for N odd or even, sesquilinear invariants of
(P)type and the same number of (P/N)-type. These we write again as

1 ' MY MY\ /g
Cs(f,9) = EM(f*ff) < >< ) ) (5.19)
MY M%) \g
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with the M*’s being given by (5.15b)-(5.15d) for the Klein-Gordon case,
and (5.17b)-(5.17d) for the Helmholtz case. The two diagonal submatrices
M? and MX are not independent, and are of (P)-type, while the antidiago-
nal submatrix M4 is (P/N)-type.

In the next section we shall see how the (P)-and (P/N)type forms

provide analogous results for the continuous systems described by the
Klein-Gordon and Helmholtz differential equations.

YI. THE CONTINUUM LIMIT,
POINCARE AND EUCLIDEAN INVARIANCE

We shall now let N = e and use the limiting expressions to describé 1

the homogeneous quadratic invariant sesquilinear forms for the true
Klein-Gordon and Helmholtz partial differential equations.

V1.1 Recalling coordinates, functions and operators

In order to obtain confortable expressions, we consider (2V + 1)-
dimensional spaces whose components are labelled by the values of the
variable

q = [Rr/@N+1D)Y2n , n=-N-N+1,..,N, (6.1)
which ranges in [—qy, qy), gy = N[27/(2N + 1)1 in steps of
Aq = [27/2N + 1))~ V2 (6.2)

It is futhermore convenient to treat functions of g defined in terms of
functions of integer nn through

fl@) = [2N + D)/2r]"3f, . (6.3)
The expressions for operator kernels should be
A(q, q') = [N + D)/ 27)24,, (6.4)

where 7 and n’ determine q and ¢’ through (6.1).

4
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V1.2 The continuum limit

If we consider functions of ¢ as step functions with the value f(g) in

q € (q —JZL Ag, q + ;— 0q], we can speak of those step-functions which,
when N — oo, approach piece-wise differentiable functions uniformly,
in the intervals of continuity. For these limit functions, which we denote
also by f(q), ¢ € & we see that inner products become

N
(f,g) = 2 flg—— f "dqf(q)*g(q) . (6.5)

/-
n=-=N N =

Here, the matrices A =14, ,||become operators A with integral kernels
A(q, q') following the general rule of replacing E‘,Y:_NAQ v [7dq
In particular, the Fourier matrix (1.5) becomes [12] the Fourier integral
kernel (27) 1’2 exp(ipq) where ¢ and p are related to n and m in (1.5)
through (6.1). Operators such as the interaction operator (1.3) do not
have a well-defined limit in the above framework, but when applied to
any vector f whose components f, tend to a twice-differentiable func-
tion f(q), it has the property of having Kf tend to kof ie., llKn.n,ll -
ko 18(q — ¢l In order to obtain second derivatives [10] we must let
any one pth-neighbour interaction spring have its k, multiplied by a
factor (2N + 1)/2np?. We set p = 1 henceforth for simplicity. Thus we

may write, weakly,

K = ko1 — kA ::" ko — k195

for k) = k (2N + 1)/27 . (6.6)

The diagonal form of this interaction operator, Eq. (1.7a), exhibits

eigenvalues

p.p € R, (6.7a)

K@, p") = up)sp—-p),

u(p) = ko + ky p? (6.7b)

The last expression is obtained from (1.7b) through putting 2N + 1 for
N, using k(‘lv) as in (6.6) and letting N = oo.

R Ietion e s THOIO oy Y
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The characterization of right- and left-travelling waves is now done
through the continuous index p, and their frequencies w ® (p) = (u(p)/M]' /2

as before divide the waves into oscillatory [u(p) > 0] and exponential |

[u(») < 0]. The Klein-Gordon equation [k = k2, k; =1, M= 1] |

exhibits solutions only of the first kind with w*(p) = £ (k? + p?)!/?

The Helmholtz equation [k, = k2, k;, = —1, M = 1] has both oscil-

latory solutions [for |p| < k, w*(p) = *(k? — p?)'/?] and exponential
ones [for |p| > k, w*(p) = *(p? — k?)'’?]. Critical solutions p = *k
need not concern us here as they represent a set of measure zero in the
manifold of solutions.

These two differential equations can be written with an index 7 = — for
the Klein-Gordon case, and 7 = + for the Helmholtz case, as
(02 +K'If(g ) =0, K = K2 +Ta3 , (6.8)
or, in two-component form as
T f(q, 1) flq, v 0 1
H = 0, >, HT = < (6.9)
filq, 1) filg, 1) b O

V1.3 Sesquilinear h&i invariant forms

The sesquilinear h&i invariant forms may be written as in (5.19),

T 1 - F - ’
Ci (F,9) = 5 f dq f dq(f(q, WA r>>

< M (q-q) Mg - q')> <
-M*7(q - ¢") M*7(q' - q")

where the f_unctionsM"’ (g —q') can be found from (5.15b-d) and (5.17b-d).
Indeed, regarding the ‘energy’-type C’s we have the functions M5 and
MT . Here, M7 (g — q') is an arbitrary function of its argument whose

Fqurier transform A<7 (p) plays the role, essentially, of ¢*(p). Out of
this, one obtains M2 (r) for the Klein-Gordon case as follows

g@', 1)

g.(q', t)> ,  (6.10)

4
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e VI4 S ble sol
L — gl - . -inte e ti
A1P (r) - (K AIK )(r) — (K2 _ a: )AL{K (I') quare-integra soiuftions
Up to this point, then, we have translated the results for discrete
- . finite systems to continuous non-compact ones. In doing so, we must be
= (27r)”"’2f ds[w(s)]ZMKTS) e, [w@®]? =«*+s5* . (6.11a) careful about quantities whose range becomes infinite. As in quantum
Lo mechanics, we may regard “good” initial conditions as those which are
square-integrable and bounded at ¢ = 0. Correspondingly, we shall be

interested in invariant homogeneous sesquilinear forms (6.10) which arc

* to produce M,
finite on this space of functions. The proper functions A" (r) which

For the Helmholtz case, it is not K which acts on MK

but the “absolute value of K operator whose action is
define the forms must then be bounded integral kernels, and thus they
K or their Fourier transforms may include up to Dirac 8’s. Since MP™ is ob-
MP(ry = (2m)™V2 ‘:f ds (k* —s*) tained from MXT through (6.11), we see that MX7 (r) should be at least
K o twice-differentiable. These appear to be all the restrictions, however.

V1.5 Poincaré and Euclidean invariance

—K oo
+ <f f ds (s* — K{I M*(s)e" :

e K Had we started out to find sesquilinear invariant forms for the continuum
Klein-Gordon and Helmholtz equations, one obvious requirement would
= (K'MY(r) — (K‘M“)(,) . (6.11b) have been that they be invariant under the symmetry group of geometric

< > transformations which leave the system invariant. For the Klein-Gordon
equation we would require invariance under space translations and in-
In the last expression, ME*(r) = Mf*(r) + M’i*(r) is decomposed as a versions, time translations and Lorentz transformations
.M’i+(r) whose Fourier transform has support on ’ s .
(—k, k) and M‘i*(r) whose Fourier transform has support on the com- q q = qcoshn+tsinhn , (6.12a)
plement of that interval. We shall come back to (6.11) below.

Lastly, for the “angular-momentum-type” of C’s we have the func- tw t =gqsinhn+tcoshn, n € K. (6.12b)
tion MA7(r) in (5.15d), (5.17d) and (6.10). This is an arbitrary function: 4
its Fourier transform MAT(s) is the product of w(s) with an arbitrary
1 ¢ (s). As we pointed out for the finite-dimensional case, all

sum of two functions:

For the Helmholtz equation we also have space translations and in-
versions, time translations, but now also rotations

functior
M -functions must be even functions of their argument.
Regarding positivity, we note that MK™ and M are for all cases g™ q = qcosd —tsinb (6.13a)
positive definite i.e., for arbitrary A(q), :
» ‘ ¢t =qsin@+tcosd , 6 € (—mm]. (6.13b)
f dqf dq'n(q)M"(q —qYh(@) = 0 . The full group of geometric transformations in the two cases is that of
- - 3 the two-dimensional Poincaré and Euclidean invariances, respectively.

For the Helmholtz case this means that the double integration defin-

Not so MAT . Indeed, as pointed out before, the corresponding ‘‘angular- : ing the sesquilinear form (6.10) can be performed over any line in the
momentum’’ invariant form is positive on the subspace of solutions f(q, ) ; q —t plane. For the Klein-Gordon case, we may relativistically ‘“rotate”
which contain only right-moving (i.e., positive-energy) solutions, and : Fhe line within the light cone containing the g-axis, as well as translating
negative for the complement. ,_5‘; itin the same plane.

f»i 4
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b= = X v N . . - o,
Now, invariance of the sesquilinear forms (6.10) under Lorentz or rota- known [11] CHRpIoSEan for the inner product of two positive-energy Klein-
tion transformations imply that Gordon amph.tudes. We recall that (6.21) is positive only in that invariant
energy (or right-travelling wave) region. The angular-momentum-type
) translation-invariant for the Helmholtz equation was se b it:
*(f R'a) = —CT (R'F . 18 translatic : : Jus seen to be unsuitable
Cs(f, Rg) s (R'f, 9) (6.18) for Euclidean invariance, so no Cg” exists.
Through integration by parts we can bring the operator entries of R” to V110 E - o
act on the components of the weight function matrix defining the form ' nergy-type sesquilinear invariants
for any time . If (6.18) is valid for all f and g in the spaces considered, N . . ) . Kr .
the component functions in the metric matrix in (6.10) are subject to oW, as to the energy-type invariant obtained from M*"and M"" we
must remember that they are also related through Eqs. (6.11). This supple-
(@ -q WM (g—q) =0, (6.19a) ments (6.19c-d) and requires that Mm% (¢ —q') be a solution of either
5 equation
(AT=ANMY(q—-q') =0, (6.19b)
) . (732 +0, — k*r]M*~(r) = 0 (Klein-Gordon), (6.22a)
qM(q—-q) = -AM(¢g-q') , (6.19¢)
c 5 <) K+, . .
MG —q) = _AMN (g — q') | (6.19d) (r32+ 3 + K"Wﬁ (n =0 3 (r) = 0 (Helmholtz). (6.22b)
) where
1 These are, respectively, modified Bessel and Macdonald functions, or
' I . ’ e Jo 3 &
AT = - (102, g, A= _—2“(2 + TB%,q b (6.19) Bessel and Neumann functions:

. . e M=) = +bK,(k ;
plus boundary conditions which are zero for the spaces of functions where M>(r) = alo(kr) + bKo(xr) (6.23a)
the M are bounded integral operator kernels, and Ifl, f(q, 1), etc., are
'fm{tel, or such that the single integrals in (6.10) over the other’s value at Mi_ (r) = Wokr) + bYo(kr) | Mf‘(r) _— (6.23b)
infinity, are zero. )

V1.9 The Klein-Gordon sesquilinear invariant form Out of these and (6.11) we find
Eas. (6.19a) and (6.19b) are solved by M"“(,) = al, (kr)/kr — bK, (kr) [kr (6.24a)
‘{,(T _ ’ — 6 _ 4 . +
M (q—-q) =cblq—q) . (6.20) M’;(r) = af, (kr)/kr + bY | (xkr)/xr | M: = —xlc . (6.24b)
For solutions of the Klein-Gordon equation, the only angular-momentum- Ail f ; : .
i type of Poincaré invariant sesquilinar form is thus found from (6.20) and uncfxons’, a3 i Lot arguments.
(6.10). It is F(?r the Klein-Gordon case, this type of invariant (6.23a)-(6.24a) is
: unsuitable since K and K, grow without bound at » = 0* while /, and
- . } I H . / o
‘. ) . : 1 grow exponentially for large r. We conclude that no energy-type
fg) =i dq [f(q. D*g,(qa. ) — f(q. D*s(q. ] , (6.2] : . N o
I (f, 9 f q [f(q (@, 1) = f,(q. )*&lq, 1)] ( ) ,: sesquilinear Poincaré invariant exists for the Klein-Gordon equation solu-
4 ) Lb tions, and that (6.21) represents the only sesquilinear Poincaré invariant
where we have chosen ¢ = 2i for reality. We arrive thus at the well- form. '
; ,
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Asking for the invariance of the sesquilinear forms under these groups
will yield essentially unique weight functions A" (g — ¢q'l) in (6.10).
Note that space inversion and translation is guaranteed by the dependen-
ce of M on the absolute value of the difference of the positions, while
time invariance was used before in asking for the quantities to be con-
served. So it is only Lorentz or rotation invariance (6.12)-(6.13) which
may still be demanded. We shall see below that this leads to ordinary
differential equations for ME7 and for M7,

V1.6 Time inversions

For the Klein-Gordon equation, the time inversion exchanges positive- b
and negative-energy solutions, and hence changes the sign of the “angular-
momentum’’ sesquilinear form obtained from the M ~-terms. This beha-
viour is expected, so the time-inversion invariance of the equation does
not apply to the subspace of physically significant solutions. Rather, the
latter are physically significant precisely because the evolution equation
does not mix them with the elements of other classes of “unphysical’
{ solution spaces. This feature is one of the basic properties of the diagonal
travelling-wave basis: time evolution keeps each wave evolving separately,
and restrictions imposed on M 7(s) as to its support will be respected
by the translation-inversion subgroup of the Poincaré group. This is in
general not true for the Lorentz subgroup (6.12). ' ;

For the Helmholtz equation, time inversions also exchange right- and
left-travelling wave subspaces, and consequently change the sign of the
: M4 terms. The difference now lies in the fact that time inversions-

’ together with space inversions- lie in the rotation subgroup (6.13) for }
6 = 7. A rotation by that angle changes the sign of the purported MA*
4 invariant, which can only qualify as an invariant, hence, if MAY) =0

in (6.10). Angular-momentum type invariant sesquilinear forms are thus
excluded for the Helmholtz case on symmetry arguments alone.

V1.7 Expomnential solutions

Note that Eqs. (6.13) for 6 = #/2 exchange the ‘space’ and ‘time’
variables ¢ and . Under this transformations, exponential solutions, be
they increasing or decreasing in the ‘old’ positive- direction, will turn
into non-square-integrable functions of the ‘new’ q, which must range
over the whole of & Exponential solutions are thus barred from having
properly defined sesquilinear forms. Arbitrary solutions of the Helm-
1 holtz equation may be first subject to a projection operator which ellim-

YoM e
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inates exponential solutions and leaves only the oscillatory ones, i.e.
those constituted out of travelling waves for the range p € (—k, ;c)j Thi;
in turn is achieved by letting MK+(p) have support on this interval. This
correspondingly reduces MF*(r) in (6.11b) to the first integral term.
(In the discrete system, Eq. (5.17a) is simplified to its first summation
through cg") = 0 for |8 > m, and similarly for (5.17b) and (5.17¢).]

In short: For the Klein-Gordon case, MX ™ and M4 ™ are still free, with
the restriction to positive-energy solutions, while for the Helmholtz case
only MX* is free with the restriction to oscillatory solutions. ,

V1.8 Lerentz and rotation generators
[he requirement of Lorentz or rotation invariance of the sesquilinear

fprms may be reduced to infinitesimal transformations [5] on the solu-
tion phase space (6.9) through the matrix operators

—rtd, q
R™ = | (6.14)
—i{Kry q}-,— _T[aq )
where 7= —1 refers to the Klein-Gordon case and 7= + ] to the Helm-

holtz case, K is given in (6.8), ¢ is the multiplication-by-argument opera-
tor and {A, b}, = AB + BA is the anticommutation of A and B.
The propertics of R™under commutation with H™ are

[H"=9,,R"] =0, (6.15)

which assures us that R”maps solutions of (6.9) into solutions of the same
equation. The operator (6.14) has the usual action of Lorentz or rotation
generators on functions on the ¢ — f plane. We also can form the Poincaré
or Euclidean Lie algebra out of R”, H™ and the generator of translations

9, O

0 0

(6.16)

4]
Il

q

[which is the limit of R — 1 as NV = co]. Indeed, the commutators are

[S,H) =0, [R",S]=-H, [R,H]=17S. (6.17)
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v1.11 The Helmholtz sesquilinear invariant form

We turn lastly to the Helmholtz equation. The two parts of ME*) =
ME () MK; (r) satisty different equations in (6.22b) due to the differ-
ent signs they have in Eq. (6.11). The MK: (r) must have a Fourier trans-
form with support on (—K. K) and the MK;(r) on its complement. Bessel
functions JV(Kr)/(Kr)” satisfy the first requirement (Ref. 13, Eq. 3.753.2
forv = 0 and its derivative for v = 1). but the YV(KI‘)/(KI‘)U exhibit the
second (Ref. 13, Eq. 3.753.4 for ¥ = 0 and its derivative for v = 1)
Only the Bessel function part can thus be present in the sesquilinear form.

The only positive Euclidean invariant sesquilinear form for the oscilla-

tory Helmholtz equation solutions is thus

Ty 1 . < 1 - * ' I
it ) = 3f dq f a7 q, DTotela = @ DD

v . 07 a3/ (jg 41 e 0y (639

Lhin cnsult was found bY vt lid]ana Steinberg (1 5], but do¢s not seem
er precedent in the literatis

he reasons given above, N«

As a final verification of the correct

to have anoth
Finally. for t

for e onential Helmholtz solutions.

.ss of (6.25) it should be noted that the only effect of finite Euclidean

ions of the Helmholtz equation is to rotate the

form of the 4 — t plane used here. As P

4

12 =K -P oscillatory

crgy-type invariant exists

Attt omsoOn the solut
the Fourier trans

pooow plane,
d to lieona circle [w(p)

and w are constraine
< kare mapped among themselves
finite tmnsformatior\s. Actually, if we establish a unitary mapping[S]
oscillating solution space and the space of £? functions on
the sesquilinear form (6.25) may pe found simply through
al £2(Sy) rotation-invariam inner pro-

solutions 1Pl under the action of these

between the
the circle Si»
the Parseval relation from the ust

duct (15]on S

v1.12 Bilinear invariant forms

Regarding bilinear invariants, W€ pick up the results of Subsect. V.15
for the Klein-Gordon equation and those at the end of Subsect. V.16 for
the Helmholtz case. we note that they reduce 1O the form (6.10). but
sation. For the Klein-Gordon case, all ensuing

without complex conjug
developments which ask for Lorentz invariance follow unchanged.-We
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arrive thus at @ unique acceptable bilinear form, identical to Eq. (6.21)
without complex conjugation (so the i can be removed). It is such howi
ever, that Cg—(f, fy = 0 for all f. 7

The Helmholtz case also leads tO (6.25), without complex conjugation
as the only acceptable form. ) ’

We have been interested in exploring Lie algebras of second- and higher-
order differential operators, and their Lie groups of integral tranngrms
We can build an SL(2,R) group through deformation of the geometri.c
E.’oincaré and Euclidean groups seen here [5]. Clarifying the question of
invariant sesquilinear forms is thus a step in setting up SL(2, R) as a group
of unitary integral transtorms on two-component function spaces associat-
ed with partial differential equations of the Klein-Gordon and Helmholtz

types.
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RESUMEN®

) Se consxd_eran sistemas discretos finitos, relacionados con las ecuaciones de diferencias-diferen-
il:;e;d;l?;mfcirdor;, de onda‘ amortigt_m‘da y de Helmholtz. I:_'\ operadot Flc ev?lucién de estossis-
oo gonal en Ia base d:. ondas viajeras, dqqde las prcp\;dndcs de simetria son evidentes. S@
onstruye el conjunto completo de formas sesquilineales ¥ bilineales invariantes en el tiempo, asO~
ciadas a un anillo factor del grupo de simetria del espacio fase. Este cnfoque es cquivalcnte: ala
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construccion de estas forimas a partir del ilgeb‘ra de Lie del grupo de simetria complctc: del SI\i;:‘:
ma. Las constantes de movimiento asociadas tienen la cstrucm'ra'de energias y mpmcn.o;;ngn =
res. Se examina la homogeneidad ante tmr}s‘fo'rmacm{\es geométricas (dxcfd.ralcs) e; mvt;r.::;mos e
tiempo, asi como sus propiedades de posxtxvxfiad. _Fm.alme_nte,' al pfmxtu!gdue os e;tiencn ol
sistema tiendan a un continuo e imponiendo invariancia de Poxgcau 9.eu<;1 }icll"sei(‘:’ s para
ductos internos positivos para el espacio de soluciones de energia positiva de Klein-Gor yp

el espacio de soluciones oscilatorias de Helmholtz.

* Traducido del inglés por la Redaccion.
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A comparison of S-matrix expansions
for elastic potential scattering.
An exactly solvable case

G Garcia-Calderén and J Herrera Mote

Instituro de Fisica,
Universidad Nacional Auténoma de México
Apdo. Postal 20-364, México 20, DF, Mexico

(Recibido el 24 de abril de 1980)

Two different expansions of the scattering matrix, the direct Mittag-Leffler expan-
sion and a Cauchy expansion involving the outgoing Green function of the problem,
are applied to the problem of elastic scattering by a delta shell potential, which is
exactly solvable and has resonances for s-wave. We study the energy region involving
the first three resonances. The comparison favours the Cauchy expansion. The results
show that unitarity is essentially preserved.

L. INTRODUCTION

[t is well known that sharp resonances in scattering can be related to
complex eigenfunctions and are associated with the presence of complex
poles of the S-matrix of the system.

This has led to the idea of constructing formalisms which represent the
scattering function as far as possible in terms of its poles and the complex
or resonance states.

Along these lines one should mention the work by Hu [1]. who obtained
a representation of the S-matrix as an infinite product of its zeros and
poles such that unitarity of .S is preserved. However resonant states do not
enter into the scheme.

In relation to expansions of S proper, in past years one finds a number
of interesting works. In particular there is the work by Humblet [2] of
1952, who studied a Mittag-Leffler expansion of the scattering function.
These early work led some years later, in 1961, to the formulation of a
theory of nuclear reactions by Humblet and Rosenfeld [3]. based also in
a Mittag-Leffler expansion of the scattering or reaction amplitude.

One should also mention the work of 1959 by Peierls [4], who con-
sidered a representation of the scattering function via a Cauchy-type of
exXpansion of the quantity S(k) = e2%? the exponential factor being intro-
duced to avoid the divergence of S(k) at large values of the complex mo-

(273]
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