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two-dimensional modes

Kurt Bernardo Wolf1,* and Tatiana Alieva2

1Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n,
Cuernavaca, Morelos 62251, Mexico

2Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Madrid 28040, Spain
*Corresponding author: bwolf@fis.unam.mx

Received October 2, 2007; accepted November 20, 2007;
posted December 10, 2007 (Doc. ID 88150); published January 16, 2008

Hermite–Gauss and Laguerre–Gauss modes of a continuous optical field in two dimensions can be obtained
from each other through paraxial optical setups that produce rotations in (four-dimensional) phase space.
These transformations build the SU�2� Fourier group that is represented by rigid rotations of the Poincaré
sphere. In finite systems, where the emitters and the sensors are in N�N square pixellated arrays, one defines
corresponding finite orthonormal and complete sets of two-dimensional Kravchuk modes. Through the impor-
tation of symmetry from the continuous case, the transformations of the Fourier group are applied on the finite
modes. © 2008 Optical Society of America

OCIS codes: 070.2580, 070.4560, 080.2720, 110.6980, 120.4820, 350.6980.
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. INTRODUCTION
araxial optical systems with two-dimensional screens
ransform the four-dimensional optical phase space ca-
onically, as specified by 4�4 matrices, which are sym-
lectic in the geometric model, and through a correspond-
ng integral transform in the scalar-wave model.
otations of this manifold are performed with matrices

hat are simultaneously symplectic and orthogonal, form-
ng the 4-parameter group of orthosymplectic matrices.
his is a 4�4 representation of the two-dimensional uni-
ary group U�2�=U�1� � SU�2� [1] that we call the Fourier
roup. The matrices act on the coordinates qk and mo-
enta pk, k� �x ,y�, of classical phase space, and include

he symmetric fractional Fourier transform (FT) in the
entral U�1� subgroup, antisymmetric FTs producing a
ractional FT in the x direction and its inverse FT in the y
irection, rotations in the xy plane generated by an or-
ital angular momentum operator, and—the subject of
ur analysis—gyrators [2–4] that rotate jointly the phase
lanes �qx ,py� and �qy ,px�. Hermite–Gauss beams are
igenfunctions of the symmetric and antisymmertic frac-
ional FT, while Laguerre–Gauss beams are eigenfunc-
ions of the symmetric FT and of rotations generated by
he angular momentum operator [5].

In this paper we study the action of the U�2� Fourier
roup on finite systems, where the input and output sig-
als consist of a finite number of complex data values ar-
anged into N�N square pixellated images [6]. There,
he 4-parameter Fourier group is represented by N2�N2

atrices that are unitary and converge (weakly) to the
orresponding integral kernels in the N→� limit [7]. The
nite analogs of the Hermite–Gauss (HG) and Laguerre–
auss (LG) modes will be presented in this paper and

ubjected to fractional gyration. To place these in proper
ontext, we review the Fourier group and its distin-
uished modes in continuous systems in Section 2. The
1084-7529/08/020365-6/$15.00 © 2
U�2� model for finite one- and two-dimensional systems
s presented in Section 3 with the finite analog of HG

odes: the two-dimensional Kravchuk modes. In Section
we import unitary rotation and gyration, thus defining

he finite analog of the LG modes: Laguerre–Kravchuk
odes. Both sets of modes, as well as their fractional

yrations—and generally their U�2� Fourier transforms—
re orthonormal and complete on the N�N points of the
ixellated grid. Comments on extensions and applications
re given in the concluding Section 5.

. ROTATORS AND GYRATORS IN
ONTINUOUS SYSTEMS
et Q̄x ,Q̄y , P̄x , P̄y be the well-known Schrödinger opera-

ors of position and momentum (indicating by the overbar
hat they refer to continuous models), whose generalized
pectra are the real lines of their respective classical ob-
ervables on phase space. Also, consider the (harmonic os-
illator) number operators

N̄k ª
1
2 �P̄k

2 + Q̄k
2 − 1�, k � �x,y�, �1�

hose spectra in the Hilbert space L2�R� are the un-
ounded point sets nk� �0,1,2, . . . �.
These Schrödinger operators satisfy the traditional

eisenberg and oscillator commutation relations with the
nit operator 1 (and �=1):

�Q̄k,P̄k�� = i�k,k�1, �N̄k,Q̄k�� = − i�k,k�P̄k,

�N̄k,P̄k�� = i�k,k�Q̄k, �2�

nd �Q̄k ,Q̄k��=0, �P̄k , P̄k��=0 as usual. Out of these opera-
ors one constructs the u�2� algebra of generators of the
�2�-FT subgroups as [8]
008 Optical Society of America



w
e
g

w
s
t
s

e
n
d
w
n
t
t
c
m
g
t
1
n

t
t
i
o
s
m

3
I
r
b
N
w
L
b
E
r
a
P
N

c

f
n
g
s
m
f
m

t
�
e
s
t

v
t
T
b
n
a
[

�

w

w

F
a
a
t

366 J. Opt. Soc. Am. A/Vol. 25, No. 2 /February 2008 K. B. Wolf and T. Alieva
symmetric FT L̄0 ª
1
4 �P̄x

2 + P̄y
2 + Q̄x

2 + Q̄y
2 − 21�

= 1
2 �N̄x + N̄y�, �3�

antisymmetric FT L̄1 ª
1
4 �P̄x

2 − P̄y
2 + Q̄x

2 − Q̄y
2�

= 1
2 �N̄x − N̄y�, �4�

gyration L̄2 ª
1
2 �P̄xP̄y + Q̄xQ̄y�, �5�

rotation L̄3 ª
1
2 �Q̄xP̄y − Q̄yP̄x� ¬ 1

2M̄, �6�

here M̄ is the (physical) orbital angular momentum op-
rator, whose eigenvalues should be integers. This Lie al-
ebra is u�2�, characterized by its commutation relations

�L̄0,L̄k� = 0, �L̄i,L̄j� = iL̄k, �7�

ith i , j ,k a cyclic permutation of 1, 2, 3. As is well known,
u�2� also has a classical realization that generates rota-
ions of the sphere, which is here the Poincaré 2-sphere
hown in Fig. 1.

In the usual Schrödinger realization, the position op-
rators Q̄x ,Q̄y are chosen to be diagonal, and the simulta-
eous eigenfunctions of 2L̄0 and 2L̄1 are the two-
imensional HG functions HGnx,ny

�2� �x ,y�=HGnx

�1��x�HGny

�1��y�,
ith eigenvalues n=nx+ny� �0,1,2, . . . � under 2L̄0 and

x−ny� �−n ,−n+2, . . . ,n� under 2L̄1. On the other hand,
he simultaneous eigenfunctions of 2L̄0 and M=2L̄3 are
he Laguerre–Gauss functions LGn,m�x ,y� with the prin-
ipal quantum number n and orbital angular momentum

� �−n ,−n+2, . . . ,n�; both are very well known [5]. The
enerator of gyration, L̄2 in Eq. (5), produces rotations of
he Poincaré sphere [9] between the 1- and 3-axes of Fig.
; for fixed n, gyrations will thus intertwine between the
+1 HG and the n+1 LG modes.

ig. 1. Rotations of the Poincaré sphere generated by the su�2�
lgebra of operators L̄1 (antisymmetric Fourier), L̄2 (gyration),
nd L̄3 (rotation). As will be defined below, the rotation angles on
he sphere are 2�, 2�, and 2	, respectively.
The above operators, transformations, and wave func-
ions of the continuous model have exact counterparts in
he two-dimensional finite oscillator models, as developed
n [10,11], where position space is an N�N square array
f points, and where the separable HG modes are de-
cribed by the product of two one-dimensional Kravchuk
odes on a Cartesian grid, to be defined next.

. FINITE su„2… SYSTEMS
n the one-dimensional finite model for optical systems we
eplace the Heisenberg and oscillator algebras in Eq. (2)
y an su�2� algebra in the representation of dimension
=2j+1, corresponding to spin j (integer or half-integer),
here it acts on N-component complex column vectors.
et �Ji�i=1

3 stand for abstract generators of the su�2� alge-
ra having the same commutation relations as �L̄i�i=1

3 in
q. (7), but carrying a distinct physical interpretation and

ole. The spectra of the operators �Ji�i=1
3 are the observ-

bles in the su�2� model: position Q=J1, momentum
=J2, and number (or displaced energy)
o=J3+ j1—indicated without bars.
For the two dimensions of the screen, the following

ommutation relations are satisfied:

�Qk,Pk�� = i�k,k��Nk − j1�, �Nk,Qk�� = − i�k,k�Pk,

�Nk,Pk�� = i�k,k�Qk, �8�

or k� �x ,y�, and all commutators with k�k� vanish. We
ote that the last two commutators in relations (8) are the
eometric and dynamic oscillator Hamilton equations, the
ame as the last two in relations (2); only the first com-
utator, between positions and momenta, is different

rom the Heisenberg commutator of the Schrödinger har-
onic oscillator model.
The six operators in relations (8) form a vector basis for

he Lie algebra su�2�x � su�2�y, and all have the spectrum
−j ,−j+1, . . . , j�. Positions, momenta, and numbers (of en-
rgy quanta) in the x and y directions will be thus intrin-
ically discrete and finite, consisting of N=2j+1 equidis-
ant points.

One-dimensional signals of N complex data points are
ectors in the Kronecker eigenbasis of the position opera-
or Q, which is thus represented by a diagonal matrix.
he finite harmonic oscillator functions are the overlaps
etween the eigenfunctions of Q=J1 and those of the
umber operator No=J3; they are given (as in quantum
ngular momentum theory) by a Wigner little-d function
12,13], for the angle 1

2� between them:

n
�N��q� = dn−j,q

j � 1
2�� ¬

�− 1�n

2j ��2j

n	� 2j

j + q	Kn�j + q; 1
2 ,2j� ,

�9�

Kn�s; 1
2 ,2j� = 2F1�− n,− j − s;− 2j;2�

= Ks�n; 1
2 ,2j� , �10�

here Kn�s ; 1
2 ,2j� is a Kravchuk polynomial [14], and

2F1�a ,b ;c ;z� is the Gauss hypergeometric function. As
ritten in Eq. (10), Kravchuk polynomials are orthogonal
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nder summation over s� �0,1, . . . ,2j� with the binomial
eight function � 2j

s �; the prefactor in relation (9) normal-
zes the �n

�N��q� under summation over q� �−j ,−j+1,
. . . , j� with unit weight function, and so we call them

ravchuk functions. They are detailed in several papers
10,11,15,16], where it is shown that they have all the de-
irable properties of the continuous HG modes, crucially
ncluding that when N→�, � 1

2N�1/4�n
�N��x�N /2� converges

niformly to the HGn�x� mode with x�R [7].
In two dimensions, N�N pixellated images are linear

ombinations of the simultaneous Kronecker eigenbases
f Qx and Qy, and correspondingly, the two-dimensional fi-
ite harmonic oscillator (Kravchuk) functions are the
verlaps between the Kronecker eigenbasis of positions
nd the number eigenbasis of Nx and Ny. They are simply
iven by [6]

�nx,ny

�N� �qx,qy� ª �nx

�N��qx��ny

�N��qy�,

qx,qy,nx − j,ny − j � �− j,− j + 1, . . . ,j�. �11�

here are N2 two-dimensional Kravchuk functions (11)
hat can be arranged by their quantum numbers nx and
y into the rhombus pattern shown in Fig. 2.

. IMPORTATION OF SYMMETRY
n the continuous model, modes arranged in the �nx ,ny�
attern of Fig. 2 form a tower with the same lower apex
s the rhombus, but whose principal quantum number n
nx+ny can grow indefinitely. States with the same n

ransform among themselves under the U�2� Fourier
roup generated by the operators (3)–(6); it can thus be
aid that they form a multiplet of spin 
= 1

2n, i.e., they be-
ave as a vector of 2
+1 components transforming under
he corresponding matrix representation of the group of
elations [8]. In the finite model however, SU�2�x

� SU�2�y does not possess a subgroup to mix horizontally
he modes of Fig. 2. Yet, one can import [17,18] these
ransformations using the same coefficients of the con-
inuous model—as if they were the n+1 modes of the
ame multiplet. In [6] a gyration by 1

2� served to define
angular momentum” modes on a square N�N point ar-
ay, which, under rotations by angles 	, multiply by the
hases eim	; they were also used to map square-to
ircular-pixellated screens in [19]. In this paper we iden-
ify the two-dimensional Kravchuk modes �nx,ny

�N� �qx ,qy� in
elations (11) with the HGn eigenmodes of L̄0 and L̄1, and
e import both continuous rotations and gyrations.

. Rotations
n the continuous model, a rotation by 	 is generated by
he angular momentum operator M̄ in relation (6)
hrough R̄�	�ªexp�−i	M̄�; because M̄=2L̄3, this corre-
ponds to a rotation around the 3-axis of the Poincaré
phere by the double angle 2	. Since L̄3 commutes with

0, the eigenvalues of the latter, 
= 1
2n= 1

2 �nx+ny�, are in-
ariant under R̄�	�, while the eigenfunctions of L̄1 will
ix with linear combination coefficients that are the
igner little-d functions d
 �2	� [12]. These coefficients
�,��
re imported to the finite model so that the rotation of the
wo-dimensional Kravchuk modes is defined by

�	�:�nx,ny

�N� �qx,qy�

ª 

nx�+ny�=n

d1/2�nx−ny�,1/2�nx�−ny��
n/2 �2	��nx�,ny�

�N� �qx,qy�, �12�

here we note that the coefficients are real. The rotation
12) of the n=4 quintuplet (spin 
=2) of two-dimensional
ravchuk modes in Fig. 2 is shown in Fig. 3. This is a
rime example of the importation of the symmetry from
ontinuous to finite models.

. Antisymmetric FT
n the continuous one-dimensional model revised in Sec-
ion 2, the number operator N̄ generates the fractional FT
roup through F���=exp�−i�N̄�, with � counted modulo
�; for �= 1

2� one has the traditional FT. Correspondingly,
n the su�2� finite model (8), the domestic number opera-
or N generates the fractional Fourier–Kravchuk trans-

ig. 2. Two-dimensional Kravchuk modes �nx,ny

�N� �qx ,qy� of the fi-
ite oscillator in a 17�17-point array �j=8� classified by nx ,ny
�0,1, . . . ,16�. Each horizontal line of modes is characterized by

he principal quantum number n=nx+ny. At each level n in the
ower triangle 0�n�2j=N−1 there are n+1 modes classified by
x−ny; in the upper triangle 2j=N−1�n�4j=2N−2 there are
j−n+1=2N−n−1 modes. The functions in the upper triangle of
he rhombus equal their reflected partners in the lower triangle,
ut for a checkerboard of alternating signs.
o
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orm K���=exp�−i�No� [10], which is represented by uni-
ary matrices of dimension N=2j+1 forming a group with

modulo 2�. When N→�, the fractional Fourier–
ravchuk transform becomes (weakly) the fractional Fou-

ier integral transform [7].
Again, in the two-dimensional continuous model, the

perator L̄1= 1
2 �N̄x−N̄y� in relation (4) generates rotations

f the Poincaré sphere around its 1-axis. This is the anti-
ymmetric fractional-FT: in the x direction by the angle �
nd in the y direction by −�. In the finite case, the corre-
ponding transformation is domestic: the antisymmetric
ractional Fourier–Kravchuk transform KA���

exp�−i��Nx−Ny��, which multiplies the two-
imensional Kravchuk modes in relation (11) by phases,

KA���:�nx,ny

�N� �qx,qy� = exp�− i��nx − ny���nx,ny

�N� �qx,qy�.

�13�

n the Poincaré sphere, KA���=exp�−2i�L̄1� is a rotation
y 2� around the 1-axis. The symmetric fractional
ourier–Kravchuk transform corresponding to the sym-
etric fractional FT group U�1� generated by L̄0= 1

2 �N̄x

N̄y� in relation (3) will act on the two-dimensional Krav-
huk modes as in Eq. (13), but with a phase exp�−i�n�.

. Gyrations
yrations by � of the Poincaré sphere in the continuous
odel are generated by L̄2 in relation (5). These rotations

round the 2-axis can be obtained from successive rota-
ions of 1

2� around the 3-axis, � around the new 1-axis,
nd back by − 1

2� around the new 3-axis. The first and
hird transformations are antisymmetric fractional FTs of
ngle 1 �,

ig. 3. Rotation of the five n=4 �
=2� two-dimensional Krav-
huk modes (top row), classified by 1

2 �nx−ny�� �2,1,0,−1,−2�, in
23�23 pixellated array (N=23, j=11). Succesive rows show

heir rotations according to relation (12) by 	=0, � /16, � /8,
� /16, � /4, corresponding to rotations of the Poincaré sphere by
	. The functions are real. Midgray pixels are 0, black and white
re minima and maxima, respectively.
4

G��� ª FA� 1
4��R���FA�− 1

4�� . �14�

e import this gyration to the finite model replacing
A�KA in relations (13) and (14)—the latter is domestic

o the finite model—and using the imported rotation of re-
ation (12). Gyration thus acts on the two-dimensional
ravchuk modes �nx,ny

�N� �qx ,qy� with the same linear com-
ination coefficients,

nx,ny

�N� �qx,qy;�� ª G���:�nx,ny

�N� �qx,qy� �15�

= 

nx�+ny�=n

e−i��nx−ny�/4

�d1/2�nx−ny�,1/2�nx�−ny��
n/2 �2��e+i��nx�−ny��/4

��nx�,ny�
�N� �qx,qy�. �16�

In Fig. 4 we show n=4 gyrated modes �nx,ny

�N� �qx ,qy ;��
or various values of 0��� 1

4� corresponding to rotations
ver a quadrant of the Poincaré sphere in Fig. 1. The up-
er row coincides with the two-dimensional Kravchuk
odes because dr,r�


 �0�=�r,r�, while the two bottom rows
how the absolute value and phase of the modes that in
6] were called (finite) “angular momentum” modes; these
ould now be called Laguerre–Kravchuk modes

ig. 4. Gyration according to relation (15) of the five n=4 �

2� two-dimensional Kravchuk modes, for angles �=0, � /16,
/8, 3� /16, � /4. The top row corresponds to that in Fig. 3 but
ere shows absolute values (instead of real parts); the two bot-
om rows show the absolute values and phases of the n+1
aguerre–Kravchuk modes classified by angular momentum m
�4,2,0,−2,−4�. Black is 0, white are maxima; in the last row,

he range from black to white is �−� ,��, except for the m=0
ode, which is real, but whose phase at ±� is numerically

nstable.
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n,m
�N� �qx ,qy�, characterized by the principal quantum num-
er of the su�2� oscillator nªnx+ny=2
� �0,1, . . . ,
�N−1��, and integer angular momentum m� �−n ,
n+2, . . . ,n�:


n,m
�N� �qx,qy� ª ei�m/2�nx,ny

�N� �qx,qy; 1
4�� �17�

= 

nx�+ny�=n

ei��nx�−ny��/4

�d1
2

m,
1
2

�nx�−ny��

n/2 � 1
2��dnx�−n/2,qx

n/2 � 1
2��

�dny�−n/2,qy

n/2 � 1
2�� . �18�

Under rotation and gyration, the modes can be ar-
anged in the same rhombus pattern as the Kravchuk
odes in Fig. 2, classified by the principal quantum num-

er n under 2L̄0, which indicates the row and is invariant.
he columns were classified initially by their eigenvalues
nder 2L̄1, but under rotation (around the 3-axis of the
oincaré sphere) or gyration (around its 2-axis), the clas-
ifying operator will rotate correspondingly to 2L̄2 or to
L̄3=M̄. Thus the N2 Laguerre–Kravchuk modes �n ,m�
re accomodated as shown in Fig. 5. They are of course
lso orthonormal and complete over the N2 pixels �qx ,qy�
f the screen, as are all modes obtained from the two-
imensional Kravchuk modes �nx,ny

�N� �qx ,qy� through trans-
ormations in the unitary U�2� Fourier group.

Last, it should be noted that the Wigner little-dn−j,q
j ���

unctions in relation (9) are actually analytic functions of
ontinuous position −j−1�q� j+1 in the N= �2j+1�-point
ignal—with branchpoint zeros at ±�j+1�. In the finite
u�2� model there is thus an analytic continuation beyond
he N= �2j+1� discrete points q� �−j , j� of the signal; this
an be seen as an underlying continuum in the model,
nd extends to the two-dimensional functions considered
ere.

. CONCLUSIONS
he Euler-angle parametrization of the SU�2� Fourier
roup elements that rotate the classical Poincaré sphere
s

D��,�,�� = exp�− i�L̄3�exp�− i�L̄2�exp�− i�L̄3�. �19�

e have seen that this group of transformations also acts
nitarily on the functions of an N�N pixellated screen,
ecause the subgroups of imported rotation and gyration,
nd the domestic Fourier–Kravchuk transforms mesh
roperly:

D��,�,�� = KA� 1
2��G� 1

2��KA� 1
2��

= KA� 1
2� + 1

4��R� 1
2��KA� 1

2� − 1
4�� . �20�

he action of the Fourier group can be extended from the
ases seen above to all N�N complex images on square
ixellated screens.
Continuous optical systems (geometric and wave mod-

ls) have a privileged group of linear canonical transfor-
ations, the 10-parameter real symplectic group Sp�4,R�
or two-dimensional screens. This group contains the
-parameter Fourier subgroup U�2�, which as we saw also
pplies to the finite model of optics with pixellated im-
ges. The remaining six parameters comprise generalized
enses and free flights, described by Fresnel transforma-
ions that shear the four-dimensional phase space, and
mage magnification with squeeze of momentum space.
hese have no linear counterpart in the finite model of op-

ics. One-dimensional Fresnel and squeezing unitary
ransformations have been defined for the finite model as
onlinear transformations of the phase space sphere and
nderstood as aberrations of the finite “paraxial” su�2�
odel [20,21].
Finally we should remark that, since most optical sen-

or devices such as CCDs are finite and pixellated, and
hase- and intensity-controlled object beams are often
roduced with similar liquid-crystal pixellated chips, it
ay be that experiments should be producing two-

imensional Kravchuk and Laguerre–Kravchuk beams,

ig. 5. Two-dimensional Laguerre–Kravchuk modes

n,m
�N� �qx ,qy� for N=2j+1=17 points �j=8�, classified by n and m.
ince �
n,m

�N� �*=
n,−m
�N� , the real parts are shown for m�0 and the

maginary parts for m�0. The highest angular momenta occur
or ±m=2j=n as if a quantum particle circulated around the pe-
iphery of the square; the m=0 modes have that particle moving
long the diagonals.
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ather than approximating their continuous, infinite
ounterparts by pointwise-sampled oscillator wave func-
ions.

CKNOWLEDGMENTS
. Alieva acknowledges the Spanish Ministry of Educa-
ion and Science for financial support (project TEC 2005-
2180/MIC). K. B. Wolf acknowledges the support of the
EP-CONACYT (México) project IN102603 “Óptica
atemática.” The authors are grateful to the UCM/
NAM Collaboration Agreement for making this joint
ork possible. We appreciate Guillermo Krötzsch for as-

istance with the graphics, and Luis Edgar Vicent for
igs. 2 and 5.

EFERENCES
1. R. Simon and K. B. Wolf, “Fractional Fourier transforms in

two dimensions,” J. Opt. Soc. Am. A 17, 2368–2381 (2000).
2. M. J. Bastiaans and T. Alieva, “First-order optical systems

with unimodular eigenvalues,” J. Opt. Soc. Am. A 23,
1875–1883 (2006).

3. T. Alieva and M. J. Bastiaans, “Orthonormal mode sets for
the two-dimensional fractional Fourier transform,” Opt.
Lett. 32, 1226–1228 (2007).

4. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Gyrator
transform: properties and applications,” Opt. Express 15,
2190–2203 (2007).

5. L. Allen, M. J. Padgett, and M. Babiker, “The orbital
angular momentum of light” Progress in Optics, Vol.
XXXIX, E. Wolf, ed. (Elsevier, 1999), pp. 294–374.

6. N. M. Atakishiyev, G. S. Pogosyan, L. E. Vicent, and K. B.
Wolf, “Finite two-dimensional oscillator: I. The Cartesian
model,” J. Phys. A 34, 9381–9398 (2001).

7. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf,
“Contraction of the finite one-dimensional oscillator,” Int.
J. Mod. Phys. A 18, 317–327 (2003).

8. A. Frank and P. Van Isacker, Algebraic Methods in
Molecular and Nuclear Structure Physics (Wiley, 1998);
Sect. 1.1.

9. G. F. Calvo, “Wigner representation and geometric
transformations of optical orbital angular momentum
spatial modes,” Opt. Lett. 30, 1207–1209 (2005).

0. N. M. Atakishiyev and K. B. Wolf, “Fractional
Fourier–Kravchuk transform,” J. Opt. Soc. Am. A 14,
1467–1477 (1997).

1. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, “Finite
models of the oscillator,” Phys. Part. Nucl. 36, Suppl. 3,
521–555 (2005).

2. L. C. Biedenharn and J. D. Louck, “Angular momentum in
quantum mechanics,” in Encyclopedia of Mathematics and
Its Applications, Vol. 8, G.-C. Rota, ed. (Addison-Wesley,
1981), Sect. 3.6.

3. N. M. Atakishiyev and S. K. Suslov, “Difference analogs of
the harmonic oscillator,” Theor. Math. Phys. 85, 1055–1062
(1991).

4. M. Krawtchouk, “Sur une généralization des polinômes
d’Hermite,” C. R. Acad. Sci. Paris 189, 620–622 (1929).

5. N. M. Atakishiyev and K. B. Wolf, “Approximation on a
finite set of points through Kravchuk functions,” Rev. Mex.
Fís. 40, 366–377 (1994).

6. N. M. Atakishiyev, L. M. Vicent, and K. B. Wolf,
“Continuous vs. discrete fractional Fourier transforms,” J.
Comput. Appl. Math. 107, 73–95 (1999).

7. L. Barker, Ç. Çandan, T. Hakioğlu, and H. M. Ozaktas,
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