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Hermite—-Gauss and Laguerre—Gauss modes of a continuous optical field in two dimensions can be obtained
from each other through paraxial optical setups that produce rotations in (four-dimensional) phase space.
These transformations build the SU(2) Fourier group that is represented by rigid rotations of the Poincaré
sphere. In finite systems, where the emitters and the sensors are in N X N square pixellated arrays, one defines
corresponding finite orthonormal and complete sets of two-dimensional Kravchuk modes. Through the impor-
tation of symmetry from the continuous case, the transformations of the Fourier group are applied on the finite

modes. © 2008 Optical Society of America
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1. INTRODUCTION

Paraxial optical systems with two-dimensional screens
transform the four-dimensional optical phase space ca-
nonically, as specified by 4 X4 matrices, which are sym-
plectic in the geometric model, and through a correspond-
ing integral transform in the scalar-wave model.
Rotations of this manifold are performed with matrices
that are simultaneously symplectic and orthogonal, form-
ing the 4-parameter group of orthosymplectic matrices.
This is a 4 X 4 representation of the two-dimensional uni-
tary group U(2)=U(1) ® SU(2) [1] that we call the Fourier
group. The matrices act on the coordinates g, and mo-
menta p;, k € {x,y}, of classical phase space, and include
the symmetric fractional Fourier transform (FT) in the
central U(1) subgroup, antisymmetric FTs producing a
fractional F'T in the x direction and its inverse FT in the y
direction, rotations in the xy plane generated by an or-
bital angular momentum operator, and—the subject of
our analysis—gyrators [2—4] that rotate jointly the phase
planes (q,,p,) and (g,,p,). Hermite-Gauss beams are
eigenfunctions of the symmetric and antisymmertic frac-
tional FT, while Laguerre-Gauss beams are eigenfunc-
tions of the symmetric FT and of rotations generated by
the angular momentum operator [5].

In this paper we study the action of the U(2) Fourier
group on finite systems, where the input and output sig-
nals consist of a finite number of complex data values ar-
ranged into N XN square pixellated images [6]. There,
the 4-parameter Fourier group is represented by N2 X N2
matrices that are unitary and converge (weakly) to the
corresponding integral kernels in the N — o0 limit [7]. The
finite analogs of the Hermite—Gauss (HG) and Laguerre—
Gauss (LG) modes will be presented in this paper and
subjected to fractional gyration. To place these in proper
context, we review the Fourier group and its distin-
guished modes in continuous systems in Section 2. The
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SU(2) model for finite one- and two-dimensional systems
is presented in Section 3 with the finite analog of HG
modes: the two-dimensional Kravchuk modes. In Section
4 we import unitary rotation and gyration, thus defining
the finite analog of the LG modes: Laguerre—Kravchuk
modes. Both sets of modes, as well as their fractional
gyrations—and generally their U(2) Fourier transforms—
are orthonormal and complete on the N XN points of the
pixellated grid. Comments on extensions and applications
are given in the concluding Section 5.

2. ROTATORS AND GYRATORS IN
CONTINUOUS SYSTEMS

Let Qx,é_)y,f’x,f-’y be the well-known Schrédinger opera-
tors of position and momentum (indicating by the overbar
that they refer to continuous models), whose generalized
spectra are the real lines of their respective classical ob-
servables on phase space. Also, consider the (harmonic os-
cillator) number operators

k e {x,y}, (1)

whose spectra in the Hilbert space £2(R) are the un-
bounded point sets n, €{0,1,2,...}.

These Schrodinger operators satisfy the traditional
Heisenberg and oscillator commutation relations with the
unit operator I (and A=1):

Ny =3(P}+QF - 1),

[QuPr]=i0u1, [NpQul=—1id, 4 Ps,

[Ny, Py 1=168, 1@, (2)

and [Q,, Q. 1=0, [P),,P;,]1=0 as usual. Out of these opera-
tors one constructs the u(2) algebra of generators of the
U(2)-FT subgroups as [8]
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symmetric FT Lg := i(}_’f + }_’3 +Q%+ Q}Z, -21)

(N +N,), 3)

DO | =

antisymmetric FT l_,l = i(l_’i - I_’i + Qi - Qf,)

=;(NV.-N,), (4)
gyration l_,2 = %(I_Jxl_’y + Qny) s (5)
rotation Ly := %(pry -Q,P,) = %M, (6)

where M is the (physical) orbital angular momentum op-
erator, whose eigenvalues should be integers. This Lie al-
gebra is u(2), characterized by its commutation relations

[Lo,Ly]=0, [L;L;]1=iL,, (7)

with 7,7,k a cyclic permutation of 1, 2, 3. As is well known,
su(2) also has a classical realization that generates rota-
tions of the sphere, which is here the Poincaré 2-sphere
shown in Fig. 1.

In the usual Schriodinger realization, the position op-

erators Qx,Qy are chosen to be diagonal, and the simulta-
neous eigenfunctions of 2L, and 2L; are the two-
dimensional HG functions HGfx)n (x,y) =HG,(11x)(x)HGilly)(y),
with eigenvalues n=n,+n,<{0,1,2,...} under 2L, and
ny—ny,e{-n,-n+2,...,n} under 2L;. On the other hand,

the simultaneous eigenfunctions of 2L, and M=2L4 are
the Laguerre—Gauss functions LG, ,,(x,y) with the prin-
cipal quantum number n and orbital angular momentum
me{-n,-n+2,...,n}; both are very well known [5]. The

generator of gyration, Ly in Eq. (5), produces rotations of
the Poincaré sphere [9] between the 1- and 3-axes of Fig.
1; for fixed n, gyrations will thus intertwine between the
n+1 HG and the n+1 LG modes.

Fig. 1. Rotations of the Poincaré sphere generated by the su(2)
algebra of operators L; (antisymmetric Fourier), L, (gyration),

and L (rotation). As will be defined below, the rotation angles on
the sphere are 23, 27y, and 2«, respectively.
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The above operators, transformations, and wave func-
tions of the continuous model have exact counterparts in
the two-dimensional finite oscillator models, as developed
in [10,11], where position space is an N XN square array
of points, and where the separable HG modes are de-
scribed by the product of two one-dimensional Kravchuk
modes on a Cartesian grid, to be defined next.

3. FINITE su(2) SYSTEMS

In the one-dimensional finite model for optical systems we
replace the Heisenberg and oscillator algebras in Eq. (2)
by an su(2) algebra in the representation of dimension
N=2j+1, corresponding to spin j (integer or half-integer),
where it acts on N-component complex column vectors.
Let {J i}?=1 stand for abstract generators of the su(2) alge-

bra having the same commutation relations as {I:i}?zl in
Eq. (7), but carrying a distinct physical interpretation and
role. The spectra of the operators {Ji}?=1 are the observ-
ables in the su(2) model: position @=<J;, momentum
P=dJ,, and number (or displaced energy)
N,=J3+j1—indicated without bars.

For the two dimensions of the screen, the following
commutation relations are satisfied:

[Qr,Pr1=16, (N —jI), [Ny,Qpl=—-16 1Py,

[Ny, Py 1=16, 1, Qs (8)

for & € {x,y}, and all commutators with % # £’ vanish. We
note that the last two commutators in relations (8) are the
geometric and dynamic oscillator Hamilton equations, the
same as the last two in relations (2); only the first com-
mutator, between positions and momenta, is different
from the Heisenberg commutator of the Schrodinger har-
monic oscillator model.

The six operators in relations (8) form a vector basis for
the Lie algebra su(2), ®su(2),, and all have the spectrum
{-j,—j+1,...,j}. Positions, momenta, and numbers (of en-
ergy quanta) in the x and y directions will be thus intrin-
sically discrete and finite, consisting of N=2j+1 equidis-
tant points.

One-dimensional signals of N complex data points are
vectors in the Kronecker eigenbasis of the position opera-
tor @, which is thus represented by a diagonal matrix.
The finite harmonic oscillator functions are the overlaps
between the eigenfunctions of @=¢J; and those of the
number operator N,=c/3; they are given (as in quantum
angular momentum theory) by a Wigner little-d function
[12,13], for the angle %77 between them:

4 (=" 27\( 2j
ON(g) =) ,(37) = > <n><j+q>Kn(j+q;%’2j)’

9)

K,(513.2)) = oF 1 (= n,~j - 53 2j;2)
=K,(n:3.%), (10)
where K,(s;3,2j) is a Kravchuk polynomial [14], and
oFi(a,b;c;z) is the Gauss hypergeometric function. As
written in Eq. (10), Kravchuk polynomials are orthogonal
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under summation over s €{0,1,...,2j} with the binomial
weight function (¥); the prefactor in relation (9) normal-
izes the d>£LN)(q) under summation over qe{-j,—j+1,

..,J} with unit weight function, and so we call them
Kravchuk functions. They are detailed in several papers
[10,11,15,16], where it is shown that they have all the de-
sirable properties of the continuous HG modes, crucially
including that when N — o, (%N )V 4(132N) (x\x’m) converges
uniformly to the HG,,(x) mode with x e R [7].

In two dimensions, N X N pixellated images are linear
combinations of the simultaneous Kronecker eigenbases
of @, and @,, and correspondingly, the two-dimensional fi-
nite harmonic oscillator (Kravchuk) functions are the
overlaps between the Kronecker eigenbasis of positions
and the number eigenbasis of N, and N,. They are simply
given by [6]

O, (@0y) = PN (@ )P (q,),

Qs qys Ty _.j’n’y _j € {_ja_j+ 1: :J} (11)

There are N? two-dimensional Kravchuk functions (11)
that can be arranged by their quantum numbers n, and
n, into the rhombus pattern shown in Fig. 2.

4. IMPORTATION OF SYMMETRY

In the continuous model, modes arranged in the (n,,n,)
pattern of Fig. 2 form a tower with the same lower apex
as the rhombus, but whose principal quantum number n
=n,+n, can grow indefinitely. States with the same n
transform among themselves under the U(2) Fourier
group generated by the operators (3)—(6); it can thus be
said that they form a multiplet of spin A:%n, i.e., they be-
have as a vector of 2\ +1 components transforming under
the corresponding matrix representation of the group of
relations [8]. In the finite model however, SU(2),
®SU(2), does not possess a subgroup to mix horizontally
the modes of Fig. 2. Yet, one can import [17,18] these
transformations using the same coefficients of the con-
tinuous model—as if they were the n+1 modes of the
same multiplet. In [6] a gyration by %77 served to define
“angular momentum” modes on a square N XN point ar-
ray, which, under rotations by angles «, multiply by the
phases e they were also used to map square-to
circular-pixellated screens in [19]. In this paper we iden-

tify the two-dimensional Kravchuk modes CI);N )n (9x,q,) in
wlty

relations (11) with the HG,, eigenmodes of L, and L1, and
we import both continuous rotations and gyrations.

A. Rotations
In the continuous model, a rotation by « is generated by

the angular momentum operator M in relation (6)
through R(a):=exp(-iaM); because M=2Ls, this corre-
sponds to a rotation around the 3-axis of the Poincaré
sphere by the double angle 2a. Since L; commutes with
I:o, the eigenvalues of the latter, )x:%nzé(ngﬁny), are in-

variant under R(«), while the eigenfunctions of L; will
mix with linear combination coefficients that are the
Wigner little-d functions d; #,(201) [12]. These coefficients
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Fig. 2. Two-dimensional Kravchuk modes @gv’)n (9x,q,) of the fi-
nite oscillator in a 17 X 17-point array (j=8) classified by N,y
€{0,1,...,16}. Each horizontal line of modes is characterized by
the principal quantum number n=n,+n,. At each level n in the
lower triangle 0<n<2j=N-1 there are n+1 modes classified by
n,—ny; in the upper triangle 2j=N-1<n<4j=2N-2 there are
4j-n+1=2N-n-1 modes. The functions in the upper triangle of
the rhombus equal their reflected partners in the lower triangle,
but for a checkerboard of alternating signs.

are imported to the finite model so that the rotation of the
two-dimensional Kravchuk modes is defined by

R(): DY), (9.,q)

7ny
o n/2 (N)
= 2 d1/2<nx-ny>,1/2(n;-ny’>(2a)q)n;,n;(qﬂc’qy) J (12)
n;c+ny':n ’

where we note that the coefficients are real. The rotation
(12) of the n=4 quintuplet (spin A=2) of two-dimensional
Kravchuk modes in Fig. 2 is shown in Fig. 3. This is a
prime example of the importation of the symmetry from
continuous to finite models.

B. Antisymmetric FT
In the continuous one-dimensional model revised in Sec-

tion 2, the number operator N generates the fractional FT
group through F(B)=exp(-iBN), with 8 counted modulo
21, for B= %’77 one has the traditional FT. Correspondingly,
in the su(2) finite model (8), the domestic number opera-
tor N, generates the fractional Fourier-Kravchuk trans-
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Fig. 3. Rotation of the five n=4 (A=2) two-dimensional Krav-
chuk modes (top row), classified by %(nx—ny) €{2,1,0,-1,-2}, in
a 23X 23 pixellated array (N=23, j=11). Succesive rows show
their rotations according to relation (12) by =0, 7/16, =/8,
3m/16, /4, corresponding to rotations of the Poincaré sphere by
2a. The functions are real. Midgray pixels are 0, black and white
are minima and maxima, respectively.

form K(B)=exp(-iBN,) [10], which is represented by uni-
tary matrices of dimension N=2j+1 forming a group with
B modulo 27. When N—«, the fractional Fourier—
Kravchuk transform becomes (weakly) the fractional Fou-
rier integral transform [7].

Again, in the two-dimensional continuous model, the
operator I:1=%(Nx—ﬁy) in relation (4) generates rotations
of the Poincaré sphere around its 1-axis. This is the anti-
symmetric fractional-FT: in the x direction by the angle 8
and in the y direction by —B. In the finite case, the corre-
sponding transformation is domestic: the antisymmetric
fractional Fourier—Kravchuk transform Ka(B)
=exp[-iB(N,—N,)], which multiplies the two-
dimensional Kravchuk modes in relation (11) by phases,

Ka(B):®Y), (4:0y) = expl= i, = ) 1Y, (q.q,).
(13)

On the Poincaré sphere, K(8)=exp(-2iB8L,) is a rotation
by 2B around the 1-axis. The symmetric fractional
Fourier—Kravchuk transform corresponding to the sym-
metric fractional FT group U(1) generated by l_,ozé(Nx

+Ny) in relation (3) will act on the two-dimensional Krav-
chuk modes as in Eq. (13), but with a phase exp(-ign).

C. Gyrations

Gyrations by y of the Poincaré sphere in the continuous
model are generated by Ly in relation (5). These rotations
around the 2-axis can be obtained from successive rota-
tions of %77' around the 3-axis, y around the new 1-axis,
and back by —%w around the new 3-axis. The first and
third transformations are antisymmetric fractional FTs of
angle i’ﬂ,

K. B. Wolf and T. Alieva

G(y) = Fa(3 ) R(NFa(- 7). (14)

We import this gyration to the finite model replacing
Far> K in relations (13) and (14)—the latter is domestic
to the finite model—and using the imported rotation of re-
lation (12). Gyration thus acts on the two-dimensional
Kravchuk modes (I>§lN)n (9x,q,) with the same linear com-

X

bination coefficients,

DY, (@04y;Y) = GO, (@:ay) (15)

= Y erimnenyie

’ ’
nx+ny—n

n/2 +im(n/-n!)/4
Xd1/2(nx—ny),1/2(n;—n;)(27)6 Y

(V)
xq)n;,n'(qx:qy)- (16)

y

In Fig. 4 we show n=4 gyrated modes @Ef\{)n (9x,9y37)
for various values of 0 < y< iw corresponding to rotations
over a quadrant of the Poincaré sphere in Fig. 1. The up-
per row coincides with the two-dimensional Kravchuk
modes because dﬁ,r,(O)zér’rr, while the two bottom rows
show the absolute value and phase of the modes that in
[6] were called (finite) “angular momentum” modes; these
could now be called Laguerre-Kravchuk modes

Fig. 4. Gyration according to relation (15) of the five n=4 (A
=2) two-dimensional Kravchuk modes, for angles y=0, 7/16,
7/8, 3m/16, /4. The top row corresponds to that in Fig. 3 but
here shows absolute values (instead of real parts); the two bot-
tom rows show the absolute values and phases of the n+1
Laguerre—Kravchuk modes classified by angular momentum m
€{4,2,0,-2,-4}. Black is 0, white are maxima; in the last row,
the range from black to white is (-, ), except for the m=0
mode, which is real, but whose phase at +# is numerically
unstable.
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A(N) '»(Qx,qy), characterized by the principal quantum num-
ber of the su(2) oscillator n:=n,+n,=2\€{0,1,
2(N-1)}, and integer angular momentum me {—n ,
-n+2,... ,n}:

on(@a,) = PO, (gay;5m) (17)

2 el n)/4

nx+ny =n
Xdri/rzn -( -n )( )dz/’z—nlzq (;77)
xdz’?_ g, (37)- (18)

Under rotation and gyration, the modes can be ar-
ranged in the same rhombus pattern as the Kravchuk
modes in Fig. 2, classified by the principal quantum num-

ber n under 2L, which indicates the row and is invariant.
The columns were classified initially by their eigenvalues

under 2L;, but under rotation (around the 3-axis of the
Poincaré sphere) or gyration (around its 2-axis), the clas-

sifying operator will rotate correspondingly to 2L, or to

2L3=M. Thus the N? Laguerre—Kravchuk modes (1,m)
are accomodated as shown in Fig. 5. They are of course
also orthonormal and complete over the N? pixels (9x,qy)
of the screen, as are all modes obtained from the two-
dimensional Kravchuk modes (ID » @x,q,) through trans-
formations in the unitary U(2) Ff)urler group.

Last, it should be noted that the Wigner httle-dJn i q(B)
functions in relation (9) are actually analytic functions of
continuous position —j—1<g<j+1 in the N=(2j+1)-point
signal—with branchpoint zeros at +(j+1). In the finite
su(2) model there is thus an analytic continuation beyond
the N=(2j+1) discrete points q €[—j,j] of the signal; this
can be seen as an underlying continuum in the model,
and extends to the two-dimensional functions considered
here.

5. CONCLUSIONS

The Euler-angle parametrization of the SU(2) Fourier
group elements that rotate the classical Poincaré sphere
is

D(4h, 6, ) = exp(— iyLg)exp(- 16Ly)exp(-igLg). (19)

We have seen that this group of transformations also acts
unitarily on the functions of an N XN pixellated screen,
because the subgroups of imported rotation and gyration,
and the domestic Fourier—Kravchuk transforms mesh

properly:
D(w,6,8) = Ka(50)9(56)Ka(59)
= Ka(50+ §mR(30)Ka(56- i) (20)

The action of the Fourier group can be extended from the
bases seen above to all N XN complex images on square
pixellated screens.

Continuous optical systems (geometric and wave mod-
els) have a privileged group of linear canonical transfor-
mations, the 10-parameter real symplectic group Sp(4,R)
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n

m

Fig. 5. Two-dimensional  Laguerre—-Kravchuk  modes
A(N) w(@x,q,) for N=2j+1=17 points (j=8), classified by n and m.
Slnce (A(N)) A(M , the real parts are shown for m=0 and the
imaginary parts for m <0. The highest angular momenta occur
for tm=2j=n as if a quantum particle circulated around the pe-
riphery of the square; the m =0 modes have that particle moving
along the diagonals.

for two-dimensional screens. This group contains the
4-parameter Fourier subgroup U(2), which as we saw also
applies to the finite model of optics with pixellated im-
ages. The remaining six parameters comprise generalized
lenses and free flights, described by Fresnel transforma-
tions that shear the four-dimensional phase space, and
image magnification with squeeze of momentum space.
These have no linear counterpart in the finite model of op-
tics. One-dimensional Fresnel and squeezing unitary
transformations have been defined for the finite model as
nonlinear transformations of the phase space sphere and
understood as aberrations of the finite “paraxial” su(2)
model [20,21].

Finally we should remark that, since most optical sen-
sor devices such as CCDs are finite and pixellated, and
phase- and intensity-controlled object beams are often
produced with similar liquid-crystal pixellated chips, it
may be that experiments should be producing two-
dimensional Kravchuk and Laguerre—Kravchuk beams,
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rather than approximating their continuous, infinite
counterparts by pointwise-sampled oscillator wave func-
tions.
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