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Abstract
Mehta has shown that eigenvectors of the N × N finite Fourier transform can
be written in terms of the standard Hermite eigenfunctions of the quantum
harmonic oscillator (1987 J. Math. Phys. 28 781). Here, we construct a one-
parameter family of q-extensions of these eigenvectors, based on the continuous
q-Hermite polynomials of Rogers. In the limit when q → 1 these q-extensions
coincide with Mehta’s eigenvectors, and in the continuum limit as N → ∞ they
give rise to q-extensions of eigenfunctions of the Fourier integral transform.

PACS numbers: 02.30.Nw, 02.30.Gp

1. Introduction

The finite Fourier transform is represented by an N × N unitary matrix A(N) = ∥
∥A

(N)
j,k

∥
∥ with

elements

A
(N)
m,m′ = 1√

N
exp

(
2π i

N
mm′

)

, m,m′ ∈ {0, 1, . . . , N−1}. (1)

(Note. In the physics literature it is more common to find the definition with a minus sign in
the exponent; of course, our results do not depend on which convention is used.)

For any given complex-valued function f (m), defined on the N integers m ∈
{0, 1, . . . , N−1}, its finite Fourier transform,

f̃ (m) :=
N−1
∑

m′=0

A
(N)
m,m′f (m′),

is also a complex-valued function, well defined on those integers. As is well known, the fourth
power of the Fourier matrix A(N) in (1) is the unit matrix, so (for N > 4) it has only four
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distinct eigenvalues λn ∈ {1, i,−1,−i}. Its eigenvectors f(n) = ‖f (n)(k)‖ are the solutions of
the standard equations

N−1
∑

m′=0

A
(N)
m,m′f

(n)(m′) = λnf
(n)(m), n ∈ {0, 1, . . . , N−1}. (2)

The finite Fourier transform appears in various physical and mathematical settings and has been
studied from several directions for applications in signal analysis [1, 2], as foundation for finite
models in quantum mechanics [3, 4] and optics [5] and for its intrinsic mathematical interest
[6, 7]. In continuous models, the Fourier integral transform is of great importance because
it interconnects the coordinate and momentum/frequency representations of a wavefunction;
we expect it to have a parallel role in finite models.

In this paper, we consider the eigenvalue problem (2) for the finite Fourier transform with
the strategy of Mehta [8], who explicitly found sets of N analytic eigenvectors of the finite
Fourier transform of dimension N. Here, we find a manifold of q-special functions f (n)(m; q)

in the interval 0 < q � 1 (or equivalently 1 � q < ∞) that are analytic in their argument
m, which can be continued into the complex plane, and for which (2) holds as a summation
formula. Mehta’s results are recovered in the limit q → 1, and in the independent continuous
limit N → ∞ we obtain a new set of eigenfunctions of the Fourier integral transform.

In section 2, we recall the main results of Mehta [8] with Hermite polynomials and
formulate the q-extension of this method in section 3, with an integral property of the
q-Hermite polynomials of Rogers. From these we build the finite Fourier q-extended eigenbasis
in section 4, and in section 5 we derive a new q-extended eigenbasis for the Fourier integral
transform. In section 7, we offer some concluding remarks.

2. Mehta’s basis with Hermite functions

We call here Hermite functions the (non-normalized) quantum wavefunctions of the linear
harmonic oscillator,

Hn(x) := Hn(x) exp(−x2/2), (3)

where Hn(x) (n ∈ {0, 1, 2, . . .}) are the Hermite polynomials of degree n in the variable
x. These are well known to be reproduced under the Fourier integral transform with
eigenvalues in,

1√
2π

∫ ∞

−∞
dx eixyHn(x) = inHn(y). (4)

In particular, the subset {Hn(x)} with n ≡ 0 (mod 4) consists of the so-called self-Fourier
functions, which are their own Fourier transforms.

Mehta [8] used the integral relation (4) to prove that the infinite sum of translated Hermite
functions

F (n)
m :=

∞
∑

k=−∞
Hn(xk(m)), xk(m) :=

√

2π

N
(kN + m), (5)

for integer m ∈ {0, 1, . . . , N−1}, satisfy the eigenvalue equation (2) with λn = in. These
Mehta functions are real and naturally periodic with period N, so we may equivalently let
the finite coordinate µ := m − 1

2 (N−1) range over the symmetric interval of equally spaced
points µ ∈ [− 1

2 (N−1), 1
2 (N−1)

]

.
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The usual inner product, norm and angle for complex N-vectors are

(f, g) :=
N−1
∑

m=0

f ∗
mgm, ‖f‖ :=

√

(f, f),

cos θf,g := (f, g)
/√

‖f‖‖g‖,

(6)

and when n1 	≡ n2 (mod 4), (F(n1), F(n2)) = 0. The basis of Mehta functions is not orthogonal
however [9], only approximately so, in the sense that for small n1 ≡ n2 (mod 4), the overlap
(F(n1), F(n2)) is also small. For example, we have estimated that when N = 33 and for n1 < 16,
the largest deviation from orthogonality occurs for n2 = 31, with the angle 90◦−θ15,31 ≈ 1.5◦.

The Mehta basis has served to define an approximate fractional discrete Fourier transform
of power α modulo 4, whose matrix kernel is defined as the bilinear generating matrix of the
vectors F (n)

m , summed over n, with the phase power exp
(

i 1
2πnα

)

. This, together with other
orthonormal and ‘approximately orthonormal’ Fourier eigenbases, was computed numerically
in [10].

3. Bases with q-Hermite functions

It turns out that many q-extensions of the well-known classical polynomial families enjoy
remarkably simple transformation properties with respect to the Fourier integral transform
(see [11] and references therein), and in the appendix we give the definition and a résumé of
properties of the continuous q-Hermite polynomials Hn(x|q) of Rogers [12–14]. It was shown
in [15] that for these polynomials the following Fourier integral transform formula holds:

1√
2π

∫ ∞

−∞
dx eixyHn(sin κx|q) e−x2/2 = inqn2/4hn(sinh κy|q) e−y2/2

= qn2/4Hn(i sinh κy|q−1) e−y2/2, (7)

where q := exp(−2κ2), 0 � κ < ∞ and

hn(x|q) := i−nHn(ix|q−1) (8)

are the so-called q−1-Hermite polynomials [16]. In the appendix, we provide the explicit
expression and some of the properties of these functions that make them useful for finite signal
analysis. (We employ the standard notations of the theory of special functions as in [17, 18].)

Observe at this point that the integral Fourier transform (7) interrelates the continuous
q-Hermite polynomials Hn(x|q) with the q−1-Hermite polynomials hn(x|q). This change
of q into q−1 is the price to formulate a meaningful q-extension of the classical Fourier
transform (4). In the limit as q → 1 (κ → 0), the Fourier integral transform (7) of course
reduces to (4). This property of (7) is a direct consequence of the known limit relations for
the continuous q-Hermite polynomials Hn(x|q),

lim
q→1−

κ−nHn(sin κy|q) = Hn(y) = lim
q→1−

κ−nhn(sinh κy|q), (9)

for 0 < q � 1 on the left-hand side and 1 � q < ∞ on the right-hand side of (9), respectively.
Having the Fourier integral transform (7), it is natural to consider its finite analogue.

In the proof of (2) for Mehta’s eigenvectors F (k)
m under the finite Fourier transform it was

essential to use the simple transformation property (4) of the Hermite functions (3) under the
Fourier integral transform. The authors of [19] employed Mehta’s technique to prove (2), but
their basic objective was (7) rather than (4). They showed that the q-extensions of Mehta’s
eigenvectors F (k)

m given by the continuous q-Hermite polynomials Hn(x|q) of Rogers, namely
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F (n)

m (q) :=
∞

∑

k=−∞
exp

[

−1

2
(xk(m))2

]

Hn(sin κxk(m)|q), (10)

F (n)

m (q−1) := in
∞

∑

k=−∞
exp

[

−1

2
(xk(m))2

]

hn(sinh κxk(m)|q), (11)

at the points xk(m) defined in (5), also enjoy simple transformation properties with respect to
the finite Fourier transform,

N−1
∑

m=0

A
(N)
j,mF (n)

m (q) = qn2/4F
(n)

j (q−1), (12)

N−1
∑

m=0

A
(N)
j,mF (n)

m (q−1) = (−1)nq−n2/4F
(n)

j (q). (13)

Since the parameters q and N are independent in the foregoing formulae [19, 20],
from (10) and (11) it is readily verified, by using (9), that the Mehta eigenvectors are regained
in the limit q → 1−,

lim
q→1−

κ−nF (n)

m (q) = F (n)
m = i−n lim

q→1−
κ−nF (n)

m (q−1), (14)

and both relations reduce to (2). Also, the continuous limit when N → ∞ returns the Fourier
integral transform (7) and its inverse, respectively.

4. Finite Fourier q-extended eigenbases

We now show that relations (12) and (13) enable us to find extensions of the Mehta eigenvectors
for the finite Fourier transform, which depend on the deformation parameter q and which are
their own finite Fourier transforms (times a phase).

We thus evaluate the action of the Fourier matrix A(N) of (1), on the linear combination
of (10) and (11),

f (n)

m (q) := an(q)F (n)

m (q) + bn(q)F (n)

m (q−1), (15)

with some nonzero constants an(q) and bn(q), which we need to determine. Then, upon
using (12) and (13), one obtains that

N−1
∑

j=0

A
(N)
k,j

(

an(q)F
(n)

j (q) + bn(q)F
(n)

j (q−1)
) = qn2/4an(q)F

(n)

k (q−1) + (−1)nq−n2/4bn(q)F
(n)

k (q)

= in
(

an(q)F
(n)

k (q) + bn(q)F
(n)

k (q−1)
)

. (16)

provided that

bn(q) = i−nqn2/4an(q). (17)

When this relation holds for each n ∈ {0, 1, . . . , N−1}, the linear combinations f (n)

m (q)

in (15) are eigenvectors of the finite Fourier transform A(N), with the eigenvalue λn = in.
With the choice for the overall constant an(q) := 1

2q−n2/8 in (17) to be justified below,
we write the q-extended Fourier eigenvector components as
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ψ(n)

m (q) := 1

2
q−n2/8

(

F (n)

m (q) + i−nqn2/4F (n)

m (q−1)
)

(18)

= 1

2

∞
∑

k=−∞
(q−n2/8Hn(sin κxk(m)|q)

+ qn2/8hn(sinh κxk(m)|q)) e−(xk(m))2/2, (19)

where the equally spaced set of points xk(m) was given in (5), the integer coordinate being
m ∈ [− 1

2 (N−1), 1
2 (N−1)

]

. In the second line of (19) we introduced the continuous
q-Hermite polynomials Hn(x|q) of Rogers. This equation shows that the eigenvectors ψ(n)

m (q)

will exhibit some symmetry with respect to the exchange q ⇒ q−1. With the choice of an(q)

in (19), it is straightforward to verify that

ψ(n)

m (q−1) = inψ(n)

m (q). (20)

The vectors ψψ(n)(q) = ∥
∥ψ(n)

m (q)
∥
∥ will thus be the eigenvectors of the N × N finite Fourier

transform matrix,

A(N)ψψ(n)(q) = inψψ(n)(q) = ψψ(n)(q−1). (21)

We understand these q-extended vectors to form the finite wavefunction analogue of a thus-
defined harmonic oscillator, that we may write on occasion as ψn(m; q) ≡ ψ(n)

m (q).
In particular, the ‘ground’ state among the q-extended Fourier eigenfunctions is a Gaussian

sum on xk(m) (since H0(x|q) = 1 = h0(x|q)), which is independent of q, and hence equal to
the q = 1 undeformed Mehta ground state F (0)

m in (5). It can be written in terms of the Jacobi
ϑ3-function [20]:

ψ0(m) := ψ(0)
m (q) =

∞
∑

k=−∞
exp

(

− π

N
(kN + m)2

)

(22)

= e−πm2/Nϑ3(π im, e−πN) = 1√
N

ϑ3

(πm

N
, e−π/N

)

. (23)

These all have Gaussian shape and converge to the Gaussian ∼ exp
(− 1

2x2
)

in the continuous
limit when N → ∞.

The overall coefficients an(q) were chosen as 1
2q−n2/8 to normalize the q-extended

eigenvectors ψψ(n)(q), so that they exhibit the natural limit property to the Mehta eigenvectors,

lim
q→1

κ−nψ(n)

m (q) = F (n)
m , (24)

consequence of limq→1 an(q) = 1
2 .

5. Integral Fourier q-extended eigenbases

We recall that the parameters q and N are independent in the relations of the previous section.
Indeed, the continuous limit N → ∞ of (24) and (20) gives rise to q-extended eigenfunctions
of the Fourier integral transform,

ψn(x; q) := lim
N→∞

ψ(n)

m(x)
(q)

= 1
2 (q−n2/8Hn(sin κx|q) + qn2/8hn(sinh κx|q)) e−x2/2 (25)
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where the interval and density of points xk(m) defined in (5) tend to infinity as
√

N and are
replaced by real x. The functions (25) then satisfy

1√
2π

∫ ∞

−∞
dx eixyψn(x; q) = inψn(y; q). (26)

This Fourier integral transform is a q-extension of the classical result (4).
It should be noted that from (25), the q-extended ground states

ψ0(x; q) = e−x2/2, (27)

all coincide with the ordinary, non-extended ground state: the basic Gaussian.

6. Concluding remarks

Note that our closing formula (26) may also be derived directly from the Fourier integral
transform (7) and its inverse, by repeating mutatis mutandis the same steps that led from (10)
and (11) to (24). Then, having derived the continuous case (26), one could have tried to work
out the finite case (24). It is difficult to tell which way is shorter: the one outlined above or the
route that we have followed in this study. We also remark that the authors of [15], in which
the Fourier integral transform (7) was first formulated, did not see the possibility of taking one
step further: to deduce (26) from (7) and its inverse.

We must leave for further study some of the uses of the q-extended Fourier eigenfunctions.
As was brought out in [10], there is a large freedom in choosing the subgroup U(1) of unitary
fractional Fourier transform matrices (A(N))α (α counted modulo 4): for every orthonormal
basis in N-dimensional space that is also eigenbasis of the Fourier transform, there is such a
subgroup. Of particular interest are the bases that derive from finite oscillator analogues, since
they can be linearly combined into coherent states that should display a clean harmonic motion
[21]. Approximately orthonormal bases, including the Mehta basis, can also be satisfactory
according to this criterion [10]. The q-extended set of eigenfunctions studied here is not
orthonormal, but with a sufficiently close analogy to the quantum harmonic oscillator, to
warrant attention.

Finally, we underline the obvious fact that all functions in this paper are periodic in the
discrete position coordinate m modulo N. Also non-periodic finite oscillators and q-oscillators
have been studied (see [22, 23]); there, the finite Fourier transform is replaced by a Fourier–
Kravchuk transform, whose fractionalization is natural in the context of an SO(3) rotation
group. Here, however, we are concerned with the finite Fourier matrix.
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Appendix. q-Hermite and q−1-Hermite polynomials

The standard Hermite polynomials are known to be generated by the three-term recurrence
relation

Hn+1(x) = 2xHn(x) − 2nHn−1(x), H0(x) = 1. (A.1)

Their explicit form for degree n in x is given by

Hn(x) :=
�n/2�
∑

k=0

(−1)k
n!

k!(n − 2k)!
(2x)n−2k, (A.2)
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where �ν� is the integer part of ν.
On the other hand, the q-Hermite polynomials of Rogers, also of degree n in y, satisfy the

three-term recurrence relation (cf equation (A.1)),

Hn+1(x|q) = 2xHn(x|q) − (1 − qn)Hn−1(x|q), H0(x|q) = 1, (A.3)

and their explicit form is

Hn(sin y|q) := i−n

n
∑

k=0

(−1)k
[n

k

]

q
eiy(n−2k), (A.4)

where we use the q-binomial and q-shifted factorial,
[n

k

]

q
:= (q; q)n

(q; q)k(q; q)n−k

, (a; q)n :=
n−1
∏

k=0

(1 − aqk). (A.5)

Since the q−1-Hermite polynomials are defined as in (8), from the two last formulae it
follows that

hn(sinh y|q) :=
n

∑

k=0

(−1)k
[n

k

]

q
qk(k−n) ey(n−2k). (A.6)
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