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Fractional Fourier transformers through reflection
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We show that an arbitrary paraxial optical system, compounded with its reflection in an appropriately warped
mirror, is a pure fractional Fourier transformer between coincident input and output planes. The geometric
action of reflection on optical systems is introduced axiomatically and is developed in the paraxial regime.
The correction of aberrations by warp of the mirror is briefly addressed. © 2002 Optical Society of America
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1. INTRODUCTION

Fractional Fourier transforms produced by optical means
have been studied for their applications to signal analysis
and image processing."? The construction of such
paraxial Fourier transformers through lenses or
waveguides has been extensively addressed in the litera-
ture, but systems involving reflection have not been sub-
ject to similar scrutiny. In this paper we develop a sys-
tematic approach to incorporate mirrors with the same
purpose. Particularly, we consider configurations where
light, after crossing a system, is reflected back through
the same system, so that the object and image planes are
coincident. At no extra cost we can work in N dimen-
sions, although our immediate interest isin N = 1 and 2.

Abstractly, reflection is an antihomomorphism of ca-
nonical transformations, linear (paraxial) as well as non-
linear (metaxial). Its definition is addressed in Section 2
on the basis of free propagation and refracting surfaces.
We apply the factorization of the refraction map®* to find
the action of reflection on the root transformation and
characterize systems cum reflection in a warped mirror.
In Section 3, reflection is reduced to an antihomomorphic
map of matrices in the paraxial regime. In Section 4 we
use the modified Iwasawa decomposition of the symplectic
groups® to build the main statement of this paper, that
any optical system cum reflection in an appropriately
warped mirror is a fractional Fourier transformer.® We
present a simple example in Section 5 in which we detail
the metaplectic phase obtained with the apparatus. The
reflection of aberrations in the metaxial regime is briefly
examined in Section 6.

Because paraxial optical systems have geometric and
wave realizations (which are 1:2-homomorphic), our pre-
sentation of the subject will include the mathematical
techniques of group theory. We favor the use of matrices
over Fresnel integrals for their simplicity. These inte-
grals (canonical transforms’) involve the rather delicate
metaplectic sign (phase®$) which stems from the double
cover of the wave over the geometric model. When this
sign is unimportant, linear matrix algebra is certainly
cleaner than multiple (improper oscillating-Gaussian) in-
tegrals, especially for numerical purposes.

Warped screens have been used before to correct Fou-
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rier transformers, both in the paraxial regime®® to build
resonators and in the metaxial regime to correct their
aberrations.!® Warped mirrors in place of screens in a
sense duplicate these systems cum reflection. Reflection
is a structural feature of the symplectic groups (linear
and nonlinear, optica! and mechanical) with an interest of
its own: It involves similarity with an element K used in
quantum optics,™* which is not symplectic. Here we ex-
plore reflection as the simplest geometric-optical realiza-
tion of this structure. Finding the Fresnel integrals for
the corresponding wave-optical realization is then a
straightforward task. Moreover, as our concluding sec-
tion shows, the action of reflection defined here can be ex-
tended consistently to the metaxial regime in any aberra-
tion order. The proof through the root transformation
has been algorithmic and holds to order 7, but we are con-
fident in conjecturing its generic validity.

2. OPTICAL ELEMENTS AND REFLECTIONS

Geometric rays are oriented lines in optical space (q, z)
e ®Y*! and points in phase space (p, q) € R2N. They
are referred to a standard screen, which is the N-dim
plane (q, 0) in optical space; phase space is a 2N-dim
symplectic manifold.! Optical systems, indicated by G,
can be built with the concatenation of a finite number of
optical elements: free spaces and refracting surfaces.
In this section we define the operation of reflection G—G
on these elements and then show that reflection can be
defined equivalently on the root transformation,®* and fi-
nally we concatenate systems with their reflection in gen-
erally warped mirrors.

In Fig. 1 we show free propagation 7, , by 2 = 0 in a
homogeneous medium of refractive index n and its reflec-
tion in a flat mirror, denoted 7, ,. Since the two maps
act identically on all rays and their phase space points, it
follows that, as operators,

Foz=Fnz- (1)

(Free flights form a one-parameter commutative semi-
group that is invariant under reflections with unit 7, o
= 1)
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Fig. 1. Reflection of free propagation in a mirror on the q plane,
seen as free propagation into the mirror world.
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Fig. 2. Reflection of a refracting surface z = {(q) between me-
dia m and n is, in the mirror world, a refracting surface
z = —{(q) between media n and m.

A refracting surface z = {(q) between two media of re-
fractive indices m and n produces the transformation of
phase space denoted S,,.,,;; this is shown in Fig. 2. Its
mirror image is also a refracting surface transformation,
but of the reflected surface z = —{(q) and between the
media n and m (order reversed), namely

SerL;{ = Sn’—);—{' (2)

(The set of refracting surface transformations is neither a
group nor a semigroup, although it includes the identity
Sm=n;¢ = 1 = Spsm;0; nevertheless, it maps onto itself
under reflection.) Equations (1) and (2) are the two el-
ementary requirements that we demand of the reflection
map.

The reflection map G—§ must also satisfy two opera-
tional requirements: First, the reflection of reflection re-
turns the original system,

g=g, (3)

so it must be bijective. And second, reflection is an anti-
homomorphism for the order of concatenation of optical
elements. Asshown in Fig. 3, if G; and G, are two optical
systems whose reflections are G, and G,, then their or-
dered product will reflect reversing the order of the fac-
tors, viz.,

G102 = Gs Gy )

The reflection of refracting surfaces [Eq. (2)] can be fur-
ther analyzed by using the factorization theorem proven
in Refs. 3 and 4 (see also Refs. 12-16). This states that
the phase-space maps due to refraction at a surface ¢ can
be (locally) factored as
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Sm'—m;l = RM;!R;;lg: (5)

into the root transformation R,,.,, which depends only on
the refractive index m of the first medium and on the sur-
face {, times the inverse of R,.,, which depends exclu-
sively on the index n of the second medium, and the com-
mon surface. These transformations are canonical inside
a connected region of phase space whose boundary is the
set of rays that are tangent to the surface.

The root transformation maps phase space from the
standard screen z = 0 to the generally warped surface ¢
in a medium 7.} The inverse root transformation brings
back the phase-space coordinates from the warped sur-
face { to the plane z = 0. In particular, for a flat surface
{ =z, the root transformation is free flight: R,
= ]—',1;20. Also, when £(0) = z,, the free flight to the sur-
face can be factored off to the left as R,., = Fn,zgRust-z4
So we need to consider only surfaces whose center is at
the origin, £(0) = 0. ,

Now, using Egs. (1), (2), (4) and (5), we can write the
reflection of a refracting surface transformation in two
ways:

-1 _ -1
SmHn'{ = Rm;ZRn;! - Rn;: Riﬂi;l 6)
’ Snomi—¢ = Rny—(Rom;—-
Since they depend on different refractive indices, the last
two members imply the equality of the root factors.
Hence the reflection of the root transformation is

Romsp = ;1}—{‘ ‘ )

Both reflection and inversion are antihomomorphisms
whose square is the identity. They are distinct and inde-
pendent, however, because (R, g)“l =Ryt = (R;,lg),
and they commute.

When we place a flat mirror at the right end of the sys-
tem G, so that rays after reflection traverse it in the op-
posite direction seeing it as G, we call the compound sys-
tem between the (coincident) input and output screens
the system cum reflection:

G1:=Gg. (8)

And if we warp the mirror from the z = 0 plane to
z = {(q), the system cum reflection G" will become

Al

G1|G21G2/G1
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Fig. 3. Reflection is an antihomomorphism: The reflected con-
“catenation of two systems G; and G, is the product of the reflected
systems, G; and Gy, in reversed order.
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G Gli=0R,,. [ GR; = GMy,0 G

= g;gg, g;:zan;;, 9
where the mirror transformation ’
Mﬂ}{::R";{/R'n;{ = R’l;{Rr;;l—{) (10)

is interposed between the specular roots of G

3. REFLECTION IN THE PARAXIAL REGIME

In the paraxial regime one replaces optical transforma-
tions G by their linear approximation G(M), represented
by matrices M that act on the coordinates of momentum p
and position q of rays at the standard screen, ()
e R?M. The matrices are symplectic,’ i.e.,

0 1

= . J—1
4 OJ—J . (11)

MJM' = J, J = [
In (N X N)-block form, this symplectic condition is writ-
ten .
A B}

Mz[c D

ABT, ATC, B'™D, CD'" symmetric, AD" — BCT = 1.
12)
In particular, it can be shown that detM = 1, so the in-
verse exists and

DT -BT
}. (13)

-CT AT

The set of 2N X 2N symplectic matrices form a group de-
noted Sp(2N, ). [Many authors write q atop p so the
elements of the representing matrices are permuted but
have the same properties. Also recall that the action of
optical systems is through the inverse matrix, G(M) : (§)
= M'l(g), so G(M;) G(My) = G(M;M;) corresponds to
the left—to-right placement of optical elements along the
z axis. We shall not need this explicitly, though.]

Because free flight 7;, , in Eq. (1) is invariant under re-
flection, it follows that so is its linear part, i.e.,

2L

M= JMJ = [

z/nl 1 z/nl 1 (14)
In the paraxial approximation, the root and refracting
surface transformations, R,., and S, are repre-
sented by symplectic upper-triangular block matrices,
called Gaussian matrices. When the quadratic surface is
of the form ¢(q) = %qTZq with symmetric Z, the matrix
block of the root transformation is G = —2mZ, and
G = 2(n — m)Z for the refracting surface. From Egs.
(2) and (7) we see that they are also invariant under re-
flection:

1 G 1 G
= , G =G. (15)

01 0 1

To find the reflection of a generic paraxial optical sys-
tem M from Egs. (14) and (15) with the antihomomorphic
property of Eq. (4), we may construct M from lenses and
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free flights,'”'® writing products of upper- and lower-
triangular matrices (the latter with a block that is a posi-
tive multiple of unity) and invert the order of product.
The result in every case is
M-M A B
B ol »
We stated before that reflection is an antihomomorphism,
which is distinct from inversion. But in the paraxial ap-
proximation, we see from Egs. (13) and (16) that we can
write one in terms of the other through a similarity ho-
momorphism:

D" BT

cT AT

- -1 0] -
M = KM 'K, } =K1, (17)

K:[o 1

We note that K is not a symplectic matrix [it does not sat-
isfy Eq. (11); but when M is symplectic, so is M.
Paraxial reflection is thus an outer antihomomorphism of
Sp(2N, R).

The action of the nonsymplectic matrix K on phase
space (g) is to reverse the ray momentum vector on the
screen, p <+ —p. This is consistent with Fig. 1 when the
reflected ray is continued in the +z direction. In a dif-
ferent context, a similar outer antihomomorphism of
Sp(4, R) has been used in Ref. 11 to distinguish separable
from entangled quantum states by their symmetry under
p < —p in Wigner’s phase space.

In the paraxial regime, systems M cum reflection [see
Eqgs. (8) and (16)] are consequently characterized by ma-
trices

M = ML = AD" + BCT 2AB’ iz
| 2cD7 (AD" + BCH)T)’ 5}
where the submatrices on the antidiagonal are symmetric
and the two submatrices on the diagonal are the trans-
poses of each other. Systems cum reflection Eq. (18) have
the generic form of all reflection-invariant matrices M"
= M. Only such matrices can have specular roots M.
Specular roots are not uniquely determined, however, be-
cause two systems M and ML, with L = diag(E, ET"1),
detE # 0, will produce the same system cum reflection,
since L = 1. These systems L are pure imagers, which
include astigmatic magnifiers and rotators,® and form the
general linear group in N dimensions, GI(N, R). There-
fore, specular roots form right coset manifolds
Sp(2N, R)/GI(N, R), modulo the subgroup of specular
roots of unity.

4. FRACTIONAL FOURIER TRANSFORMS

In this section we show that by properly warping the mir-
ror at the end of an arbitrary paraxial system, the system
cum reflection can be made a pure fractional Fourier
transformer. We recall from Ref. 6 that in N dimensions,
fractional Fourier transforms form the group U(N) of
N X N unitary matrices UUT = 1 (where T is transpose
conjugate), which is the maximal compact subgroup of
Sp(2N, R), and is represented on phas~ space by ortho-
symplectic matrices, (i.e., matrices both orthogonal and
symplectic). We build the proof by using the modified




#1194

J. Opt. Soc. Am. A/Vol. 19, No. 6/June 2002

Iwasawa decomposition of Sp(2N, R) matrices of Ref. 5
into a pure Fourier transformer, a pure imager, and an as-
tigmatic Gaussian matrix:

A B
M:[c D
ReU ImU|[E 0 |1 G
=[—ImU ReUHO ET‘1HO 1J' -

[This decomposition is global but not unique because ro-
tators A=R(#) =D, B=0=C, RR" =1, are both
pure imagers and pure Fourier transformers.]

Warping the screen to the quadratic shape z = {(q)
= q'Zq in a medium of refractive index n, multiplies the
system on the right by the root transformation R, z, rep-
resented by a Gaussian upper-triangular matrix. Hence
we can eliminate the Gaussian factor in Eq. (19) when

2nZ = -G = MR,,

ReU ImU
" |-ImU ReU

E 0
o -1l 20)

The system cum reflection in the warped mirror is thus a
pure U(N)-Fourier transformer,

1t _ ReUU" ImUU'

Moz = MBRoaM = | oo™ RevUT

}, (21)

characterized by the symmetric unitary matrix UUT
e U(N).

5. SIMPLE EXAMPLE

To build a simple prototypical example of a system cum
reflection, we consider the axisymmetric “cat’s-eye” sys-
tem of Fig. 4, for which we can use 2 X 2 matrices.! The
Iwasawa decomposition, Eq. (19), is

E 0|1 G

0 E7'jjo 1]

We choose the parameters to be simple numbers: the
“air” and “eye” refractive indices will be m = 1 and
n = -32- respectively, and the object plane will be fixed at
zo = 6 units to the left of the optical center of a spherical
refracting surface of unit radius Z = % in the paraxial ap-
proximation. At a variable distance to the right, z
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Fig. 4. Example of a pure fractional Fourier transformer com-
posed of two media, m and n, separated by a spherical interface.
A movable, warpable mirror is indicated by dashed lines. The
distance 2y is fixed, while for the mirror z = ny > 0 is adjust-
able.
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Fig. 5. (a) Mirror warp coefficient Z(y) as a function of y
= %z > 0 in the Fourier transformer of the Fig. 4. Bullets
mark y = 2, where the one-pass system is an impure Fourier
transformer, and y = 3 where it is an impure inverting imager.
(b) Locus of the one-pass systems in the (a, ¢) plane of matrix el-
ements. (c) Fourier-Iwasawa angle 6 counted modulo 47. The

heavy curve shows the range of fractional Fourier transform
angles of these systems; the range includes the second metaplec-

tic unit 1’ but not the identity 1.

= nx = 2y (x > 0), we place the warpable mirror. This
system, a lens between two free spaces, is represented by
the matrix

-6+ 2y -2

1 0]f1
M=l 1 0
(23)

When the lower-left matrix element of M vanishes (at y
= 3= %z), the system is an inverting imager (impure,
since b # 0) of magnification —2. The vanishing of the
upper-left element (at y = 2 = 3z) turns M into a Fou-
rier transformer (magnifying, slanting, i.e., impure).

By elementary 2 X 2 matrix algebra we find the depen-
dence of the Iwasawa parameters (4, E, G) on y,

1 0
-x 1

SN

1 1
T 2X i}

6= arga — ic) = arg[(1 + 6i) — (3 + 2i)x], (24)

E = +(a? + )2 = +(37 - 25x + ¥xH)¥ > 0,

(25)
ab + cd 50 — 17y 5
= = = = 3¢L,.
a2+ c? 148 — 100y + 172 iy =30
(26)
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As we move the mirror along z, we should warp its surface
toz = Zq? with Z = 3G given by Eq. (26), to eliminate
the Gaussian factor of the Iwasawa decomposition; the
function Z(y) is shown in Fig. 5(a). When the angle in the
Iwasawa decomposition of M is # (an impure Fourier
transformer with slant), the system cum reflection M,If’z
will be a pure Fourier transformer of angle 26 (i.e., of
power 46/7). The range of this “Fourier-Iwasawa” angle
&x) of M is shown in Fig. 5(b) by the line [a(y), c(x)] in
polar coordinates, with (E, 6) given by Egs. (25) and (24).
The slope of the line is 4, and at the lower limit of the pa-
rameter y = 0, the angle is 6(0) = arctan 6 ~ 80.54°.
The “one-pass” system M(z) is an impure Fourier trans-
former at 6(2) = 37 and an impure imager at 6(3)
= . Beyond, the line [a(y), c¢(x)] is in the third quad-
rant; and as y — o, the Fourier angle becomes 6(x)
= m + arctan4 ~ 255.96°.

Paraxially pure fractional Fourier transformers ob-
tained from this system cum reflection thus have a range
of angles 26 between ~162° and ~512° = 152°, an extent
of almost 360° as shown in Fig. 5(c). It is useful to keep
count of the angle beyond 360° because the symplectic
group is doubly covered by the metaplectic group in
paraxial wave optics (see Refs. 5 and 6 and references
therein). The Fourier transformer cum reflection at
X = 2 is a pure inverting imager, 26(2) = 7; and an im-
pure inverting imager cum reflection is a pure upright im-
ager at 260(3) = 2m. As far as geometric optics is con-
cerned, this angle is equivalent to 0 and the latter system
is equivalent to the trivial unit system; but in wave optics
it is the “second metaplectic unit” at 27, where wave fields
are multiplied by —1.

6. ON REFLECTION AND CORRECTION OF
ABERRATIONS

To complement the study of reflection, we examine briefly
its action on the aberrations of axisymmetric optical sys-
tems in the context of the factored-product expansion of
canonical transformations.'2-161° (We should warn the
reader that we work with Hamilton-Lie aberration coef-
ficients rather than with the traditional Seidel
coefficients.?’) In the metaxial regime of aberration order
2k — 1 (and rank & = 2, 3,...), optical systems are real-
ized by operators

G{A;M};,) := G{aberration part; paraxial part},
2n

= exp{A;,°} X -+ X exp{As,°}
X exp{Aj,°} X G(M),

where G(M) is the paraxial part seen in Section 3 and the
aberration part is factored into exponentiated Poisson-—
Lie operators {A;,°}:=(d44;) - dp — (dpA;) - dq, of func-
tions Aj(p, q) of homogeneous degree 2j in the coordi-
nates of phase space, which are also polynomials of degree
J in the axisymmetric monomials |p|%, p - q, and |q/?.
When these operators are concatenated, the factored-
product series can be consistently truncated to rank k;
one thus obtains a finite-parameter group of nonlinear ca-
nonical transformations of phase space up to the corre-
sponding degree.?!
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The paraxial part can also be put in exponentiated
Poisson-Lie form, with a linear polynomial in the axisym-
metric monomials. In particular, exp{3z|p|?,c} generates
paraxial free flight whose matrices are Eq. (14),

exp{%qulz,o} does the same for the Gaussian matrices
Eq. (15) of refraction, and exp{ap - q,°} generates pure
magnification corresponding to the diagonal matrices
diag [exp(a), exp(—a)]. The first two are invariant under
reflection, while the last changes the sign of a. It is sur-
mised thus that under reflection, optical system (27)
maps such that its factors undergo

exp{A; ,°}—>exp{A;,°} = exp{4,},

Ailpl%, p- a, la®) = Ai(lpl%, -p - q, |q/?), (28)

and multiply in the inverse order. The action of reflec-
tion given by Egs. (28) is consistent with the use of the
nonsymplectic matrix K in Eq. (17); the reflection of sys-
tem (27) can be written (for any rank k) also as

G{A; M} = G{0; K}G{—A; M} 'G{0; K} (29)

The necessity of the minus sign in front of the aberration
part in Eq. (29) derives from the reflection invariance of
metaxial free flight (with its spherical aberration coeffi-
cients). Using the symbolic computation program
mexLIE,?>? we have verified that the ensuing reflection
of the root transformation indeed reproduces Eq. (7) to ab-
erration order 7. This minus sign is important beeause it
negates any possible homomorphism between reflection
and inversion beyond the paraxial regime.

The reflection map [expressions (28)] classifies aberra-
tions by their parity; pure comas and distortions!® exhibit
odd (negative) parity. Hence when the system cum re-
flection has a paraxial part M!! = +1, its third- and fifth-
order comas and distortions vanish. Beyond, the com-
pounding of the lower-order even aberrations will yield
generally nonzero values to the higher-order odd ones;
this is an inevitable artifact of any factored-product ex-
pansion. The authors have verified that fractional Fou-
rier transformers, when built as systems cum reflection,
can be corrected beyond the paraxial regime by warping
the mirror to a polynomial shape {(q) = {p]a|®* + ¢4/q|*
+ --+. We have found that one parameter {,; at each ab-
erration order allows the iterative correction of one or a
linear combination of aberration coefficients, in essen-
tially the same way as in a previous paper.?* We do not
detail this analysis further here because it lacks the im-
mediacy of our results in the paraxial approximation.
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