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Connection between two Wigner functions for spin systems
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In 1981, Agarwal proposed a Wigner quasiprobability distribution function on the group SU~2! that serves
to analyze two-particle spin states on a sphere. Recent work by our group has included the definition of an
apparently distinct Wigner function on generic Lie groups whose natural range has the dimension of the group
and serves for all square-integrable representations; for the SO~3! case this entails a three-dimensional ‘‘meta-
phase’’ space. Both have the fundamental properties covariance and completeness. Here we show how the
former is obtained as a restriction of the latter.

PACS number~s!: 03.65.Bz, 42.50.Fx
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I. CONSTRUCTION OF AGARWAL

In Ref. @1#, Agarwal proposed the construction of
Wigner quasiprobability distribution function for SO~3! irre-
ducible representation~irrep! classified states, which ha
been much used to describe two interacting systems of fi
spin S @2#. First one considers the irreducible tensor@polar-
ization operator, cf.@3#, Eq. ~2.4~6!!#

T̂L,M
~S! 5A2L11

2S11 (
m,m852S

S

uS,m8&CS,m;L,M
S,m8 ^S,mu, ~1!

where CS,m;L,M
S,m8 is the Clebsch-Gordan coefficient th

couples two representations of spinS to a total spin 0<L
<2S and projectionM. @We note that operators only ofin-
teger spin L participate, representing SO~3! rather than
SU~2!.# Then, for a density~Hilbert-Schmidt operator! r, the
correspondingWigner-Agarwal type-V function @4# is de-
fined on the sphere (u,f)PS2 through

WV
A ~ruu,f!5 (

L50

2S

(
M52L

L

VL,MYL,M~u,f!* Tr~ T̂L,M
~S! r!,

~2!

whereYL,M(u,f)5YL,2M(u,f)* is the spherical harmonic
Tr is the operator trace, andV5$VL,M% are complex num-
bers.

The simplest analogue of the Wigner function with des
able properties is obtained forVL,M51, while other setsV
yield other quasi- or distribution functions.@The operator~2!
acting onr is self-adjoint forVL,M5VL,2M* .# In particular,
when VL,M is independent ofM, the Wigner function is
manifestly covariant under SO~3!, because similarity trans
formations ofr by a rotation will devolve a geometric trans
formation of the sphere coordinates~u, f!. Also ~for V
51), using Clebsch-Gordan identities, one can easily pr
that the overlap~or completeness! relation holds:

E
s2

sinu dudf WI
A~ruu,f!WI

A~tuu,f!5Tr~rt!. ~3!
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This relation is important because it allows the formulati
of a measurement theory.

II. WIGNER FUNCTION ON A GENERAL LIE GROUP

A rather general construction of a covariant Wigner fun
tion has been made on unimodular, exponential-type
groups@5#, in particular on SU~2! @6#, and can be generalize
to nonunimodular~such as the affine! groups@7#. Basically,
one builds an operator that is the integral over the gro
manifold of the operator exp@yW•(xW2JW)#, whereJW is the vector
of its generators,yW are its polar coordinates, andxW is a vector
whose components are themeta-phase-spacecoordinates
over a real space with the dimension of the group manifo
Here we write the SO~3! Wigner function as

Wv
B~ruxW !5E v~y!dyE

s2

d
yW

y
eiyW•xWTr~e2 iyW•JWr!, ~4!

wherev(y) is a weight function of the lengthy5uyW u, one of
the polar coordinates of the group; this ‘‘radius’’ labels co
jugation classes. Instead of~0, 2p!, the ‘‘radius’’ y must
have the range~2p, p! to ensure the hermiticity of the
Wigner function,Wv

B(r†uxW )5Wv
B(ruxW )* . In the SO~3! mani-

fold of polar coordinates, we recall that diametrically opp
site points are identified; hencey actually ranges over a
circle. In polar coordinates, the left- and right-invariant me

sure over the group isv(y)5 1
2 sin2 1

2 y.
Note that the Wigner function~4! is a function of xW

PR3, in contradistinction to the Wigner-Agarwal functio
~2!, which is a function of the sphere (u,f)PS2 only, and
that all spins~irreducible representations! of SO~3! are in-
cluded. It is easy to see also that, for any weightv, the
general Wigner function~4! is covariant. The purpose of thi
Brief Report is to show in what sense both Wigner functio
are equivalent, and in what do they differ.

III. EQUIVALENCE BETWEEN THE TWO WIGNER
FUNCTIONS

First we recall two generating functions that are va
for numbers and for SO~3! operators in their
(2S11)2-dimensional reducible representation@3#; the latter
©2000 The American Physical Society01-1
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is reduced into the irreduciblesL50,1,...,2S. They are

eiyW•xW5 (
L50

`

(
M52L

L

4p i L j L~xy!YL,MS yW

yDYL,MS xW

xD *
, ~5!

e2 iyW•JW5 (
L50

2S

(
M52L

L

gL
S~y!YL,MS yW

yD *
T̂L,M

~S! ,

gL
S~y!5

2Ap~2 i !L

A2S11
xL

S~y!, ~6!

where j L(z) is the spherical Bessel function of orderL, and
gL

S(y) is written in terms of the generalized characters of
group, which are@see Ref.@3#, Sec. 2.4, Eqs.„2.4~8!… and
„4.15~38!…#

xL
S~y!5A~2S11!~2S2L !!

~2S1L11!!
sinL 1

2 y

3S d

d cos1
2 yD

L sin~S1 1
2 !y

sin 1
2 y)

. ~7!

The generalized characters are functions that include
group characters in the way that the associated Lege
polynomials include the ordinary Legendre ones.

Now, replacement of Eqs.~5! and ~6! into Eq. ~4! yields
the relation between the two Wigner functions in the form

Wv
B~ruxW !5 (

L50

2S

(
M52L

L

hL
S~x!YL,MS yW

yD *
Tr~ T̂L,M

~S! r! ~8!

5Wh
L
S~x!

A S rU xW

xD , ~9!

hL
S~x!54p i LE dy v~y! j L~xy!xL

S~y!, ~10!

where we have used the integral over the sphereyW /y of two
spherical harmonics to eliminate two of the sums. The fo
of Eq. ~8! is that of a Wigner-Agarwal function~2! of type
VL,M5hL

S(x). We note that the independence ofV on the
projection numberM is a necessary and sufficient conditio
for covariance.

We now show that, if we integrate the general Wign
function Wv

B(rxW ) over x>0 with measurexndx, 0,n,1,
we can find a weight functionv(y) such that it yields the
Wigner-Agarwal function. In Eq.~8!, this integral affects
only the factorhL

S(x), yielding

E
0

`

xndxhL
S~x!54p i LE

2p

p

dyv~y!xL
S~y!E

0

`

dx xn j L~xy!

5
4p22n

A2S11

G„1
2 ~L1n11!…

G„1
2 ~L2n12!…

E
2p

p

dy
v~y!

yn11 xL
S~y!.

~11!
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~See Ref.@8#, Eq. 6.561.14.! An orthogonality relation for
the generalized characters@which does not appear in Ref.@3#,
but can be proven from its Eq. 4.15~2!# is

E
2p

p

dy xL
S~y!xL8

S
~y!52pdL,L8

2S11

2L11
. ~12!

This allows us to extract the functionvS(y) such that Eq.
~11! is *0

`xndxhL
S(x)51, namely

vS,n~y!5
yn11

2n~2p!3 (
L850

2S
2L811

A2S11

G„1
2 ~L82n12!…

G„1
2 ~L82n11!…

xL8
S

~y!,

~13!

which will be independent ofL. Then, the relation betwee
the general and the Wigner-Agarwal functions~4! and~2! is

E
0

`

xndx WvS,n

B ~ruxW !5W1
AS rU xW

xD , 0,n,1. ~14!

The conclusion of this development is that the ne
group-theoretically motivated Wigner function~4!, which is
defined overR3 and is a functional of a density~Hilbert-
Schmidt! operator, when restricted to spinS, yields the co-
variant Wigner-Agarwal function~2!, which is defined over
the sphere, endowing it with a radius-dependent typeVL(x).
As shown in Eq.~10!, it is the spherical Hankel transform o
order L of the weight functionv(y) times the generalized
characters~7! of the group.

IV. OVERLAP FORMULA AND THE WEIGHT FUNCTION

The freedom we have assumed for the weight funct
v(y) of the conjugation classes of the group~and their har-
monic transform function over the irreducible represen
tions! is curtailed when we demand that the general Wig
function satisfy the overlap condition~3!. Indeed, when we
use Eq.~8! to compute this integral overR3 in polar coordi-
nates, we find

E
R3

dxW Wv
B~ruxW !Wv

B~tuxW !

5 (
L50

2S

(
M52L

L

~21!MTr~ T̂L,M
~S! r!Tr~ T̂L,2M

~S! t !

3E
0

`

x2dx@hL
S~x!#2, ~15!

where we have used the integration over the sphere of
two spherical harmonics to eliminate two of the sums. N
we can compute the remaining integral overx, replacing the
square of Eq.~10! and noting the Parseval relation betwe
norms of two functions related by the Hankel transform,

E
0

`

x2dxuhL
S~x!u25

32p4

2S11 E dy

y2 @v~y!xL
S~y!#2. ~16!

Whenv(y) is such that this integral is a constant, then t
1-2
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right-hand side of Eq.~15! is Tr ~rt!, and the usual overlap

formula ~3! holds. This occurs whenv(y)5y sin 1
2 y,

independently of the assumed bound on the spinsS.
While the Wigner-Agarwal function was introduce

prompted by physical considerations in quantum optics,
Wigner function~4! was built in Ref.@5# for polychromatic
wave optics, but with the view to extend its definition
ev
h,

. S
8

r

03410
e

general Lie groups. Several particular cases were studied@6#,
among them the SU~2! case that appears in this report.
more comprehensive mathematical treatment in@7# shows
that for the affine group, the proposed Wigner functi
matches the concept of hyperimage in wide-band radar
aging@9#. It is good to see the relation between these app
ently disjoint functions.
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