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Connection between two Wigner functions for spin systems
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In 1981, Agarwal proposed a Wigner quasiprobability distribution function on the group) $hat serves
to analyze two-particle spin states on a sphere. Recent work by our group has included the definition of an
apparently distinct Wigner function on generic Lie groups whose natural range has the dimension of the group
and serves for all square-integrable representations; for tti8) $&se this entails a three-dimensional “meta-
phase” space. Both have the fundamental properties covariance and completeness. Here we show how the

former is obtained as a restriction of the latter.

PACS numbds): 03.65.Bz, 42.50.Fx

|. CONSTRUCTION OF AGARWAL

In Ref. [1], Agarwal proposed the construction of a

Wigner quasiprobability distribution function for $8) irre-

ducible representatioriirrep) classified states, which has

This relation is important because it allows the formulation
of a measurement theory.

II. WIGNER FUNCTION ON A GENERAL LIE GROUP

been much used to describe two interacting systems of fixed A rather general construction of a covariant Wigner func-

spin S[2]. First one considers the irreducible tengpolar-
ization operator, cf[3], Eq. (2.4(6))]
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where C3,
couples two representations of sgto a total spin GsL

<2S and projectionM. [We note that operators only @f-

teger spin L participate, representing $8& rather than
SU(2).] Then, for a densityHilbert-Schmidt operatorp, the
correspondingWigner-Agarwal typ&) function [4] is de-
fined on the spheref(¢) € S, through
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whereY | y(6,¢)=Y_ _m(6,¢)* is the spherical harmonic,

Tr is the operator trace, ard={{_\} are complex hum-
bers.

tion has been made on unimodular, exponential-type Lie
groups[5], in particular on S(R) [6], and can be generalized
to nonunimodulalsuch as the affinegroups|7]. Basically,
one builds an operator that is the integral over the group

manifold of the operator exj- (X—J)], whereJ is the vector
of its generatorsy are its polar coordinates, aids a vector
whose components are thmeta-phase-spaceoordinates

is the Clebsch-Gordan coefficient that ©Ver @ real space with the dimension of the group manifold.

Here we write the S@G) Wigner function as
B, o Y g5 aniy-d
Ww(pIX)=fw(y)dyf d)—/ey Tr(e™Y"p), (4
S2

wherew(y) is a weight function of the lengthh=|y|, one of
the polar coordinates of the group; this “radius” labels con-
jugation classes. Instead 0, 2w), the “radius” y must
have the rangd—, w) to ensure the hermiticity of the
Wigner function W2 (p'|%) =WE(p|%)*. In the S@3) mani-
fold of polar coordinates, we recall that diametrically oppo-
site points are identified; hence actually ranges over a
circle. In polar coordinates, the left- and right-invariant mea-

sure over the group i®(y)=3 sirf 3.
Note that the Wigner functior{4) is a function of X

The simplest analogue of the Wigner function with desir- e R3, in contradistinction to the Wigner-Agarwal function

able properties is obtained fér, ,,=1, while other set<)
yield other quasi- or distribution functionSLhe operator2)
acting onp is self-adjoint forQ y=Qf _\,.] In particular,
when ) \ is independent oM, the Wigner function is

(2), which is a function of the spher&(¢) € S, only, and
that all spins(irreducible representation®f SQ(3) are in-
cluded. It is easy to see also that, for any weightthe
general Wigner functiod) is covariant. The purpose of this

manifestly covariant under @), because similarity trans- Brief Report is to show in what sense both Wigner functions
formations ofp by a rotation will devolve a geometric trans- are equivalent, and in what do they differ.

formation of the sphere coordinatés, ¢). Also (for ()

=1), using Clebsch-Gordan identities, one can easily prove

that the overlagor completenegselation holds:
| sinodoag wiiolo. w000 =Trcon. @)
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I1l. EQUIVALENCE BETWEEN THE TWO WIGNER
FUNCTIONS

First we recall two generating functions that are valid
for numbers and for S@) operators in their
(2S+ 1)?-dimensional reducible representati@j; the latter
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is reduced into the irreduciblds=0,1,...,25. They are

L

V=3 477iLjL(Xy)YL,M(X)YL,M<§) . ()
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wherej, (z) is the spherical Bessel function of orderand

gr(y) is written in terms of the generalized characters of the

group, which ardsee Ref[3], Sec. 2.4, Eqs(2.4(8)) and
(4.1539))]
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The generalized characters are functions that include th
group characters in the way that the associated Legend

polynomials include the ordinary Legendre ones.
Now, replacement of Eq$5) and (6) into Eq. (4) yields

the relation between the two Wigner functions in the form

T(TShp)  (8)
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where we have used the integral over the splyéyeof two

spherical harmonics to eliminate two of the sums. The form

of Eq. (8) is that of a Wigner-Agarwal functio2) of type
Q,_,M=hf(x). We note that the independence @fon the

projection numbeM is a necessary and sufficient condition

for covariance.

We now show that, if we integrate the general Wigner

function W2(pX) over x=0 with measurex’dx, 0<v<1,
we can find a weight functiom(y) such that it yields the
Wigner-Agarwal function. In Eq(8), this integral affects
only the factorh®(x), yielding

[ Seaxtoo=amit | dyondo [ axxiiom
0 —a 0

3 47227 r(%(L+v+1))F o(y) )
C\2STITG(L-v+2)) = yyv+1X|_(y :

(11
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(See Ref[8], Eq. 6.561.14. An orthogonality relation for
the generalized charactdmghich does not appear in R¢8],
but can be proven from its Eq. 4.3] is

.o 25+1
f, dYXL(Y)XLr(Y):Zbe‘L,Lfm- (12

This allows us to extract the functiong(y) such that Eq.
(11) is [5x"dxh’(x)=1, namely

v+1

o 2L+1TG (L' =v+2) o

V20 V2S+1 TG (L — v+ 1))XL'(y)’
(13)

y
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which will be independent of. Then, the relation between
the general and the Wigner-Agarwal functidds and (2) is

.

*® X
f x"dx WE_ (plX)=Wg| p < 0=<v<l. (14
O ), V

The conclusion of this development is that the new,
group-theoretically motivated Wigner functidgd), which is
defined overR® and is a functional of a densitgHilbert-
Schmid} operator, when restricted to sp8) yields the co-

ariant Wigner-Agarwal functiori2), which is defined over

e sphere, endowing it with a radius-dependent §péx).

As shown in Eq(10), it is the spherical Hankel transform of
order L of the weight functionw(y) times the generalized
characterg7) of the group.

IV. OVERLAP FORMULA AND THE WEIGHT FUNCTION

The freedom we have assumed for the weight function
w(y) of the conjugation classes of the gro(gnd their har-
monic transform function over the irreducible representa-
tions) is curtailed when we demand that the general Wigner
function satisfy the overlap conditiof8). Indeed, when we
use Eq.(8) to compute this integral ovét® in polar coordi-
nates, we find

fRSd%WE,<p|x*>WE,<T|x*>
2S L
=2 2 DM Ty )

X fo x2dx h2(x)12, (15)
where we have used the integration over the sphere of the
two spherical harmonics to eliminate two of the sums. Now
we can compute the remaining integral oxereplacing the
square of Eq(10) and noting the Parseval relation between
norms of two functions related by the Hankel transform,

“ 327 [ d
| xeaningor=sers [ Flemdwr a9

When w(y) is such that this integral is a constant, then the
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right-hand side of Eq(15) is Tr (p7), and the usual overlap general Lie groups. Several particular cases were stiiflied
formula (3) holds. This occurs whenw(y)=ysiniy, among them the S@) case that appears in this report. A
independently of the assumed bound on the sfins more comprehensive mathematical treatmenf7h shows

While the Wigner-Agarwal function was introduced that for the affine group, the proposed Wigner function
prompted by physical considerations in quantum optics, thénatches the concept of hyperimage in wide-band radar im-
Wigner function(4) was built in Ref.[5] for polychromatic ~ aging[9]. It is good to see the relation between these appar-
wave optics, but with the view to extend its definition to ently disjoint functions.
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