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Abstract. We build Wigner maps, functions and operators on general phase spaces
arising from a class of Lie groups, including non-unimodular groups (such as the
affine group). The phase spaces are coadjoint orbits in the dual of the Lie algebra
of these groups and they come equipped with natural symplectic structures and
Liouville-type invariant measures. When the group admits square-integrable rep-
resentations, we present a very general construction of a Wigner function which
enjoys all the desirable properties, including full covariance and reconstruction for-
mulae. We study in detail the case of the affine group on the line. In particular, we
put into focus the close connection between the well-known wavelet transform and
the Wigner function on such groups.

I Introduction: the original Wigner function

The notion of a quantum-mechanical phase space, where the evolution of a state
can be described by a (quasi-)probability distribution function over classical (‘c-
number’) coordinates of position and momentum (q, p) ∈ R

2, hinges on the func-
tion introduced by Wigner [25] in 1932. Given two wavefunctions φ(x) and ψ(x),
of the space coordinate x ∈ R, their Wigner function on phase space (q, p) is

WQM(φ, ψ|q, p;h) =
1
h

∫
R

dxφ(q − 1
2x) e−2πi xp/h ψ(q + 1

2x). (1)

Here h is the Planck constant, which fixes the scale (and units) of the two clas-
sical coordinates, incorporating the uncertainty principle. When φ = ψ, we write
WQM(ψ|q, p;h) = WQM(ψ,ψ|q, p;h) and speak of the Wigner function of the state
ψ on phase space. While phase-space probability functions for classical systems are
non-negative but otherwise arbitrary, a Wigner function is much more restrictive
and (except for Gaussian functions) does have (usually small) regions where its
values are negative. For this reason it is properly called a quasi - probability distri-
bution function and named the Wigner function for short. Nevertheless, issues of
quantum measurement can be discussed adequately in terms of the Wigner func-
tion, and it serves well in formulating a picture of quantum mechanics at par with
the Schrödinger, Heisenberg and Feynman formulations [16]. More recently, it has
served as a fine tool for quantum optics [1], [19], since using it density matrices
(i.e., ‘impure states’, or positive trace-class Hilbert-Schmidt operators) can also be
effectively plotted in terms of position-momentum or action-angle phase spaces.
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The analysis of signals in time and frequency is crucial for radar technology, so
quite early analogues of the Wigner function, such as the Woodward self-ambiguity
function [28], were extensively studied and applied [23], [8]; in this case, the unit of
phase space area h in (1), is set equal to one. Also in the context of monochromatic,
paraxial wave optics, the Wigner function is easily used for the analysis of one-
dimensional signals such as a code bar [6], since a simple lens arrangement will
produce on a screen an intensity field which is closely related to its Wigner function
[18]. The two canonically conjugate coordinates in this case are position on the
screen and spatial frequency (optical momentum), with the fundamental unit of
phase space area being now λ, the wavelength of the light. Recently, the group-
theoretical study of various optical and quantum mechanical models, where the
observable quantities of a system are the eigenvalues of the generators of a Lie
group [27], [21], [5], has suggested a substantial generalization of the concepts of
Wigner functions and of phase space.

In this article we develop a fairly rigorous group-theoretic foundation for the
study of Wigner functions for a class of Lie groups which admit square-integrable,
unitary irreducible representations. Typically these groups are related to the un-
derlying symmetry and dynamics of the physical system, and incorporate its spe-
cific geometry. The group has a natural action on the dual space of its Lie algebra,
called the coadjoint action, and the orbits of this action are possible phase spaces
of the system. These coadjoint orbits carry natural symplectic structures which
make them geometrically similar to classical phase spaces. They carry invariant
measures under the group action, which are analogues of the well-known Liouville
measure on ordinary phase space. The original Wigner function (1) arises from a
square-integrable representation of the Heisenberg-Weyl group —the group of the
canonical commutation relations. This has pointed the direction to follow toward
a generalization of the notion of the Wigner function to other Lie groups [27].

As an application of the general theory, we treat in detail the affine group,
whose Wigner function is shown to be closely related to the well-known wavelet
transform. This two-parameter group is non-unimodular, i.e., its left- and right-
invariant Haar measures are distinct. The affine group, being non-unimodular,
makes it imperative that the mathematical properties of square-integrable repre-
sentations be used in order to arrive at an adequate generalization of the Wigner
phase space formalism.

In Section II we present a first approximation to the generalization of Wigner’s
phase space formalism, developed in Refs. [27], [21], and [5], to display the desirable
properties of a phase space function. To make this paper self contained, the follow-
ing three Sections organize the required mathematical fundamentals and thus the
notation. Section III recalls the exponential map between a Lie algebra and group,
to define the coadjoint action of the group on the dual of the algebra, providing the
‘c-number’ arguments of the Wigner function, such as those on the right-hand side
of Eq. (1). Section IV looks at various natural representations of the group, asso-
ciated to the adjoint and coadjoint actions. Finally, Section V discusses the class
of group representations for which Wigner functions can be built and presents the
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objects whose Wigner functions are to be determined; these are Hilbert-Schmidt
operators (‘density matrices’), including ‘pure state’ wavefunctions.

In Section VI we define the Wigner map and function of Hilbert-Schmidt
operators on the Hilbert space carrying the group representation, and look at
their properties. In particular, we obtain the formula for the reconstruction of
the density matrix from its Wigner function. In Section VII we explain the re-
lationship between the Wigner transform, coherent states of the group and the
generalized wavelet transform. Finally, some of the key expressions are written
down in coordinate terms, for comparison with known formulae. The specific case
of the two-dimensional affine group is examined in Section VIII and its Wigner
transform is calculated there as an explicit example and application. In Section
IX, we display for the affine group the exact relation between the Wigner map
(the Wigner function with one fixed ‘mother’ wavelet) and the wavelet transform.
Section X is devoted to showing how the original Wigner function in (1) can be
derived using the general theory as applied to the Heisenberg-Weyl group. We
conclude in Section XI with some general comments and indicate some directions
for further research.

The Wigner function does not contain more information than the original
signal or wavefunction. But, in the same way that a musical score shows through
notes on the pentagram the essence of a tune better than a complete pressure-wave
register of a performance, the information is presented in a form kinder to human
comprehension.

II The Wigner operator: a first generalization

In Reference [27] it was proposed that the Wigner function (1) of φ, ψ, or of the
density matrix ρ = |ψ〉〈φ|, be written as the matrix element of a ‘Wigner operator’
W, which is a (measurable, operator-valued) function on phase space,

W (φ, ψ | X∗) = 〈φ | W(X∗) | ψ〉, W (ρ | X∗) = Tr[ρW(X∗)], (2)

where X∗ is an element of the dual of the Lie algebra whose components in a
chosen basis provide the ‘c-number’ arguments of the Wigner function.

II.1 The Wigner operator

The Wigner operator is, roughly speaking, the Fourier transform of the (Hilbert
space representation of) the group elements g ∈ G, previously written in terms of
the coordinates �ξ = {ξi}ni=1 of X∗ as

W(�ξ ) =
∫
RG

dµ(g[�x ]) e−i	ξ·	x g[�x ], g[�x ] = exp(i�x · �X ), (3)

where �X = {Xn}Nn=1 is a basis of generators (consisting of Hilbert space operators)
for the Lie algebra and the square brackets indicate that the arguments are the
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polar coordinates of the group, with domain �x ∈ RG ⊂ R
N . The measure dµ(g) is

the left invariant Haar measure (also the right invariant Haar measure, since in this
expression the group had been assumed to be unimodular). For the Heisenberg-
Weyl algebra [26], Eqs. (2) and (3) yield the Wigner function (1), with the common
Schrödinger operators �X = {Q,P,Λ} and Λ = h1, in the irreducible representation
labelled by h ∈ R−{0}; the corresponding c-number coordinates are �ξ = {q, p, h}.
With abuse of notation [24] one may think of this operator as (2π)3 δ(Q−q) δ(P −
p) δ(Λ − h).

The following subsections highlight the basic properties of the construction
(2)–(3) which show that it is a proper generalization of the original Wigner function
of quantum mechanics [16], [14].

II.2 Sesquilinearity and reality

In a unitary representation of the group, the Wigner operator (3) is (formally) self-
adjoint. Hence the Wigner functions (1) and (2) are sesquilinear in their Hilbert
space arguments, i.e.,

W (φ, aψ1 + bψ2 | X∗) = aW (φ, ψ1 | X∗) + bW (φ, ψ2 | X∗), (4)
W (ψ, φ | X∗) = W (φ, ψ | X∗). (5)

It follows that the Wigner function of a single wave function is real, W (ψ | X∗) =
W (ψ,ψ | X∗) ∈ R. For a sum of functions (such as Schrödinger-cat states),

W (φ+ ψ | X∗) = W (φ | X∗) +W (ψ | X∗) + 2ReW (φ, ψ | X∗). (6)

There is holographic information in the interference cross-term.

II.3 Covariance

Translations and linear transformations of classical phase space X∗ = (q, p) �→
T(q, p), are equivalent to the canonical transforms T of the wavefunctions, for the
original Wigner function [12]. More generally [5], under an automorphism group
of the Lie algebra, the form of (3) implies the covariance property

W (ψ | TX∗) = W (T ψ | X∗). (7)

This formula is important because it ensures the correspondence between classical
and quantum phase spaces.

II.4 Overlap and reconstruction

From the Wigner function one can recover the wavefunction (up to an overall
phase) or the density matrix by exploiting the overlap and reconstruction relations.
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For the traditional case of the Heisenberg-Weyl algebra (1) the overlap condition
is ∫∫

R2
dq dpW (φ, ψ | q, p)W (υ, ω | q, p) = 〈φ | ω〉 〈υ | ψ〉. (8)

This formula is important because it shows the passage from the Wigner to the
Schrödinger or Heisenberg formalisms of quantum mechanics, and holds corre-
spondingly between the Wigner function and wavefunctions on Lie groups. From
Eq. (8) also follow various properties of marginal distributions, or projections over
some of the phase-space coordinates, and of moments [16], e.g.,∫

R

dpW (φ, ψ | q, p) = φ(q)ψ(q). (9)

III Lie groups, Lie algebras and their duals

In this and the next two sections we collect some relevant notions and results on Lie
groups and some of their representations. While most of the concepts and results
presented here are known, especially to people working in representation theory,
they may not be generally familiar —at least not in the setting in which we need
them. Moreover, since the terminology for analogous concepts in quantum optics
is often quite different, we go into some detail to explain the mathematical notions
and terminology, particularly since the Wigner function has such wide applications
in wave and quantum optics.

III.1 Exponential map; adjoint action

Let G be a Lie group generated by a Lie algebra g. The Lie algebra is a linear
vector space, and the exponential map from g to G,

expX = g, X ∈ N0 ⊂ g, g ∈ Ve ⊂ G, (10)

is a topological homeomorphism between an open set N0 around the origin 0 in
g, and an open set Ve around the identity element e in G. We denote the inverse
map from G to g by

log g = X, X ∈ N0 ⊂ g, g ∈ Ve ⊂ G. (11)

It is well known [15] that the neighbourhood Ve inG can be chosen to be symmetric,
i.e., if g ∈ Ve, then also g−1 ∈ Ve. In this paper we shall also assume that Ve can be
chosen to be an open dense set in G, such that its complement has (Haar) measure
zero. (A group such as Sp(2n,R) does not have this property.)

There is a natural action of the group G on its Lie algebra g, called the
adjoint action, Ad. For g, go ∈ Ve ⊂ G such that go g g−1

o ∈ Ve, this action maps
X ∈ g to Y = Adgo X ∈ g through

exp(Adgo X) = expY = go(expX)g−1
o . (12)
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If G is a matrix group, so that g also consists of matrices, then

Adgo X = goX g−1
o . (13)

III.2 Dual space, coadjoint action

The Lie algebra g is a vector space, and hence has a dual denoted g∗, also a vector
space, consisting of all linear functionals on g. Let 〈X∗;X〉 denote the dual paring
between X∗ ∈ g∗ and X ∈ g. In other words, 〈X∗;X〉 is simply the value X∗(X)
of the functional X∗, computed on the vector X. If we introduce a basis {Xi}ni=1 in
g (n being its dimension), and the dual basis {X∗i}ni=1 in g∗ (i.e., 〈X∗i;Xj〉 = δij),
then for X =

∑n
i=1 x

iXi and X∗ =
∑n

i=1 ξiX
∗i, with xi and ξi real numbers, we

get

〈X∗;X〉 =
n∑
i=1

xiξi = �x · �ξ. (14)

Also in these coordinates, the (translation invariant) Lebesgue measures on g and
g∗ assume respectively the forms

dX → d�x = dx1 ∧ dx2 ∧ . . . ∧ dxn, dX∗ → d�ξ = dξ1 ∧ dξ2 ∧ . . . ∧ dξn. (15)

The coadjoint action Ad�go of a group element go ∈ Ve ⊂ g on a vector
X∗ ∈ g∗ is defined by the relation

〈Ad�go X
∗;X〉 = 〈X∗; Adg−1

o
X〉. (16)

This is the dual action on g∗ induced by the adjoint action. In terms of the
bases introduced in g and g∗ as above, if the adjoint action Adgo has a matrix
representation, then the representation of the coadjoint action Ad�go is given by
the inverse transposed matrix.

III.3 Coadjoint orbits and invariant measures

If X∗
0 is a fixed element of g∗, the set of all elements of g∗ of the type Ad�gX∗

0 ,
g ∈ G, is its orbit under G, denoted O∗. Orbits under the coadjoint action are
symplectic manifolds, i.e., smooth surfaces in g∗, generally of lower dimension than
g∗, which have a structure similar to classical phase spaces. Moreover, these orbits
O∗ come naturally equipped with measures dΩ(X∗) (analogues of the Liouville
measure on ordinary phase space), which are invariant under the coadjoint action
of G [17]. Namely,

dΩ(X∗) = dΩ(Ad�gX
∗), X∗ ∈ O∗, (17)

for all g ∈ G. An orbit O∗ of this type is called a coadjoint orbit. Clearly, two
such orbits are either distinct or else they coincide entirely. The collection of all
coadjoint orbits exhausts g∗ and we may write⋃

λ∈J
O∗
λ = g∗, (18)
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where λ could be a discrete or continuous parameter, or set of parameters that
characterize the orbits, and J is the appropriate index set. We denote the invariant
measure on the coadjoint orbit O∗

λ by dΩλ.
In view of (18), any element X∗ in the vector space g∗ belongs to some orbit

O∗
λ and hence may be written as X∗

λ, to display the orbit dependence explicitly.
We shall assume the following decomposition of the Lebesgue measure on g∗:

dX∗ = dκ(λ) σλ(X∗
λ) dΩλ(X∗

λ), X∗
λ ∈ O∗

λ, (19)

where κ is the appropriate measure on the parameter space J and σλ a positive,
non-vanishing function on the orbit O∗

λ. Depending on the nature of J , the measure
dκ can be discrete or continuous, or can have both a discrete and a continuous
part. Such a decomposition will hold for all the cases of interest to us, while more
generally, it is a statement of a certain regularity condition [11].

IV Invariant Haar measures, the regular and coadjoint represen-
tations

Every Lie group carries a left- and a right-invariant Haar measure, dµ� and dµr
respectively. These satisfy

dµ�(g) = dµ�(gog), dµr(g) = dµr(ggo), g ∈ G, (20)

for fixed but arbitrary g0 ∈ G. In general the left and right Haar measures are
different (though equivalent in the sense of measures). However, for unimodular
groups (including compact, abelian, certain semidirect products, etc.) they turn
out to be the same, i.e., dµ�(g) = dµr(g). Note that Năımark groups, including
solvable groups such as the two-parameter affine group of translations and dilata-
tions, are not unimodular.

IV.1 Modular function; left- and right-regular representations

Since generally, the left and right Haar measures are measure-theoretically equiv-
alent, they are related through a modular function ∆(g). This is a positive and
real-valued measurable function on G, satisfying

dµ�(g) = ∆(g) dµr(g) = dµr(g−1). (21)

The modular function is also a group homomorphism: ∆(g1g2) = ∆(g1)∆(g2), for
all g1, g2 ∈ G and ∆(e) = 1. In what follows, we shall only need the left Haar
measure dµ� and so write it simply as dµ. (All conclusions can be formulated
equivalently in terms of the right Haar measure.)

Using the Haar measure dµ one can build two unitary representations of G:
the left- and right-regular representations. Consider the Hilbert space L2(G, dµ),
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of all measurable, complex-valued functions f on G, satisfying∫
G

|f(g)|2 dµ(g) < ∞.

On this Hilbert space we define a representation of G by unitary operators U�(g),
g ∈ G, such that

(U�(g)f)(g′) = f(g−1g′), f ∈ L2(G, dµ), (22)

holding for almost all g′ ∈ G with respect to the measure dµ. This is called the
left-regular representation; its unitarity is trivially checked using the invariance
properties of the measure dµ. Similarly, we define the right-regular representation
Ur(g) on the same Hilbert space L2(G, dµ), where it is also unitary, and given by

(Ur(g)f)(g′) = [∆(g)]
1
2 f(g′g), f ∈ L2(G, dµ), (23)

again for almost all g′ ∈ G with respect to dµ. It is easy to verify that the left-
and right-regular operators U�(g) and Ur(g) commute. Moreover, the two rep-
resentations are unitarily equivalent by the map M on f ∈ L2(G, dµ) given by
(Mf)(g) = [∆(g)]−

1
2 f(g−1). This map is unitary and a straightforward computa-

tion using (21) and the homomorphism properties of the modular function, shows
that MU�(g)M−1 = Ur(g).

IV.2 Adjoint and coadjoint representations

The adjoint and the coadjoint actions of the group give rise to two interesting
unitary representations connected by an integral, generalized Fourier transform
relation. Consider the two Hilbert spaces L2(g, dX) and L2(g∗, dX∗) of Lebesgue-
measurable complex-valued functions on the Lie algebra and its dual, respectively,
and which are square-integrable with respect to the corresponding Lebesgue mea-
sures. On L2(g, dX) one defines the adjoint representation V (g) of g ∈ G by the
operators

(V (g)F )(X) = ‖Adg ‖−
1
2 F (Adg−1 X), F ∈ L2(g, dX), (24)

where ‖Adg ‖ is the determinant of the linear transformation Adg on g. The
operators V (g) form a unitary representation of G.

Similarly, on L2(g∗, dX∗) one defines the coadjoint representation by the
operators V �(g), g ∈ G, given by

(V �(g)F̂ )(X∗) = ‖Ad�g ‖−
1
2 F̂ (Ad�g−1 X

∗), F̂ ∈ L2(g∗, dX∗), (25)

where ‖Ad�g ‖ is now the determinant of the linear transformation Ad�g on g∗.
Again, the operators V �(g) form a unitary representation of G.
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The dual representations V (g) and V �(g) are unitarily equivalent. They are
related by the Fourier transform F : L2(g, dX) → L2(g∗, dX∗),

(FF )(X∗) = F̂ (X∗) =
1

(2π)
n
2

∫
g
e−i〈X

∗ ; X〉F (X) dX, (26)

which is a unitary map. The unitary equivalence of the two representations:

FV (g)F−1 = V �(g), g ∈ G, (27)

is then established using (16) and the facts that ‖Ad�g ‖ = ‖Adg ‖−1 and
d(AdgX) = ‖Adg ‖ dX.

IV.3 Covariant coadjoint representation

We now construct a unitary representation of G on each coadjoint orbit O∗
λ. Going

back to (17)–(18), for each λ ∈ J we define a Hilbert space Hλ = L2(O∗
λ, dΩλ),

consisting of all complex-valued dΩλ-measurable functions F̂λ on the orbit O∗
λ,

which are square-integrable,∫
O∗

λ

|F̂λ(X∗)|2 dΩλ(X∗) < ∞.

We represent g ∈ G on the Hilbert space Hλ by the operator U �
λ(g), where,

(U �
λ(g)F̂λ)(X

∗) = F̂λ(Ad�g−1 X
∗), X∗ ∈ O∗

λ. (28)

Because of the invariance of dΩλ under the coadjoint action Ad�g, this representa-
tion is unitary.

Comparing V � in (25) with U �
λ in (28), we see that although both representa-

tions are built on the dual of the Lie algebra g∗, U �
λ appears to be more covariant

—in the sense that it has no ‘scaling factor’ ‖Ad�g ‖−
1
2 in it. This is because the

measure dΩλ is actually invariant under the coadjoint action, while the measure
dX∗ is (in general) not. On the other hand, the representation U �

λ is restricted to
functions on a single orbit Oλ only (λ is fixed), while V � is defined on functions on
the entire dual space g∗. However, as we now proceed to show, using the factored
form (19) of the Lebesgue measure, it is possible to combine all the representations
U �
λ, λ ∈ J , into a single representation U �, which is unitarily equivalent to V �, and

which is defined on functions on all of g∗.
We define the covariant coadjoint representation U � on the set of all the

Hilbert spaces Hλ that carry the representations U �
λ, combined into a single direct

integral Hilbert space H̃ of the component spaces Hλ,

H̃ =
∫ ⊕

J

Hλ dκ(λ). (29)
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The elements of H̃ consist of collections of vectors

Φ = {F̂λ}λ∈J , F̂λ ∈ Hλ. (30)

When Φ = {F̂λ} and Φ′ = {F̂ ′
λ} are two such collections, and α, β are complex

numbers, then we may also define their linear combination, αΦ + βΦ′ = {αF̂λ +
βF̂ ′

λ}. In this way we provide a linear vector space structure on the set of all such
collections of vectors Φ. Next, using the measure dκ appearing in (19), we retain
only those vectors Φ which satisfy

‖Φ‖2 =
∫
J

‖F̂λ‖2 dκ(λ) =
∫
J

[∫
O∗

λ

|F̂λ(X∗)|2 dΩλ(X∗)

]
dκ(λ) < ∞. (31)

The set of all such vectors forms the Hilbert space H̃ on which Eq. (31) defines a
norm.

All the coadjoint representations U �
λ in (28) can now be collected into the

one covariant coadjoint representation U � on H̃ in the manner:

U �(g)Φ = {U �
λ(g)F̂λ}λ∈J , g ∈ G, (32)

which is unitary by construction. Note that this is indeed defined on all of g∗,
since for any X∗

λ ∈ g∗ coming from the coadjoint orbit O∗
λ, we have

(U �(g)Φ)(X∗
λ) = (U �

λ(g)F̂λ)(X
∗
λ) = F̂λ(Ad�g−1 X

∗
λ), (33)

by (28).

IV.4 Unitary equivalence of representations

We end this section by showing that the coadjoint representation V � in (25) and
the covariant coadjoint representation U � above, are unitarily equivalent; this will
complete the proof of the equivalence of all three representations: the adjoint V ,
the coadjoint V � and covariant coadjoint U �.

Consider the relation (19) between the Lebesgue measure dX∗ on the dual
g∗ of the Lie algebra, and the invariant measures dΩλ on the coadjoint orbits O∗

λ.
Again, since d(Ad�gX∗) = ‖Ad�g ‖ dX∗, and dΩλ(Ad�gX∗

λ) = dΩλ(X∗), it follows
that

‖Ad�g ‖ σλ(X∗
λ) = σλ(Ad�gX

∗
λ). (34)

Thus we introduce finally the linear map Ñ : L2(g∗, dX∗) → H̃ intertwining the
coadjoint and the covariant coadjoint representations,

ÑF̂ = {Ĝ′
λ}λ∈J , where, Ĝ′

λ(Xλ) = [σλ(X∗)]
1
2 F̂ (X∗

λ), X∗
λ ∈ O∗

λ. (35)

Using (19) and (34) it is then straightforward to check that Ñ is a unitary map
for which

ÑV �(g)Ñ−1 = U �(g). (36)
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With these preliminaries attended to, we turn our attention in the next two Sec-
tions to the actual construction of the Wigner map, the Wigner function and the
Wigner operator.

V Square-integrable representations

The existence of the Wigner map hinges on the existence of a class of represen-
tations for certain types of groups. These are the so-called square-integrable [2]
or discrete-series representations which enjoy an intertwining property with the
left-regular representation U�, characterized in Eq. (22).

V.1 Admissible vectors

Let U be an unitary irreducible representation of G on a Hilbert space H. We
recall that U is square-integrable if there exists a non-zero vector η ∈ H, called an
admissible vector, such that

c(η) =
∫
G

|〈U(g)η|η〉|2 dµ(g) < ∞. (37)

It is easy to see that if η is admissible, then so is also U(g)η for any g ∈ G. In
other words, the set A of all admissible vectors is invariant under U ; then, the
irreducibility of U implies that either A is dense in H, or else A = {0}; in the
latter case, U is not square-integrable. When G is a unimodular group, the square
integrability of U implies that A = H, i.e., every vector in H is admissible (see,
e.g., [13]).

V.2 Orthogonality relations

The matrix elements 〈U(g)ψ|φ〉 of a square- integrable representation U satisfy cer-
tain useful orthogonality relations. Indeed, every square-integrable representation
determines a unique positive invertible operator C on H, whose domain coincides
with the set A of all admissible vectors. Furthermore, for all vectors η1, η2 ∈ A
and arbitrary vectors φ1, φ2 ∈ H, the following orthogonality relation holds:∫

G

〈U(g)η2|φ2〉〈U(g)η1|φ1〉 dµ(g) = 〈Cη1|Cη2〉 〈φ2|φ1〉. (38)

When G is a unimodular group, then C is a positive multiple of the identity, i.e.,
C = λI, for some λ > 0. For non-unimodular groups, C is an unbounded operator
and its domain A is only dense in H. This form of the orthogonality relations is
well-known; however, for our purposes it will be convenient to use an extended
version of these relations [3].

Let B2(H) denote the space of all Hilbert-Schmidt operators on H. This is
the Hilbert space obtained by taking all finite complex combinations of rank-one
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operators on H of the type ρ = |ψ〉〈φ|, ψ, φ ∈ H, and closing the resulting set in
the norm ‖ρ‖B = {Tr[ρ∗ρ]} 1

2 , which arises from the scalar product

〈ρ2|ρ1〉B = Tr [ρ2
∗ρ1]. (39)

The orthogonality relations (38) can now be extended to hold between pairs of
elements in the Hilbert space B2(H). This is done using the Wigner transform, as
we show below.

V.3 The Wigner transform

Let η ∈ H be an admissible vector and consider the vector ψ = Cη, which is in
the range of C (i.e., in the domain D of C−1, dense in H). Using such vectors we
define the Wigner transform as the linear map W̃ : H ⊗D(C−1) → L2(G, dµ),

(W̃ρ)(g) = 〈U(g)C−1ψ|φ〉 = Tr[U(g)∗ρC−1], (40)

where ρ = |φ〉 〈ψ| ∈ B2(H) and the star denotes the adjoint. Then for any two
such ρi ∈ B2(H), i = 1, 2 and ρi = |φi〉 〈ψi|, the orthogonality relations (38) may
be reexpressed as:∫

G

(W̃ρ2)(g)(W̃ρ1)(g) dµ(g) = Tr [ρ2
∗ρ1] = 〈ρ2|ρ1〉B. (41)

The relation (40) defines a linear transform map W̃ from H ⊗ D(C−1) [the
dense subspace of B2(H) generated by vectors of the form |φ〉 〈ψ|, φ ∈ H, and ψ in
the domain of the operator C−1] into L2(G, dµ). Foundations of this map for the
Heisenberg-Weyl algebra can be seen in [20], where it is known as the characteristic
function, and in [14] as the Wigner transform. Our construction finds more basic
the WignermapW defined in the next Section, and of which W̃ is the (generalized)
Fourier transform.

The Wigner transform map W̃ preserves the scalar product, hence it is an
isometry; it may be therefore extended by continuity to an isometry valid on all of
B2(H). We use the same notation for this extended Wigner transform map, now
W̃ : B2(H) → L2(G, dµ). It associates to each Hilbert-Schmidt operator ρ a square-
integrable function fρ(g) on the group. On a dense set of elements ρ ∈ B2(H), we
can recover the original function fρ by the trace formula:

fρ(g) = (W̃ρ)(g) = Tr[U(g)∗ρC−1]. (42)

The unitary representation U(g) acting on the Hilbert space H can be lifted im-
mediately to a unitary representation U� on the Hilbert space B2(H). Indeed, we
simply define its action on a vector ρ ∈ B2(H) by ordinary operator product from
the left,

U�(g)ρ = U(g)ρ. (43)
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Now, for any g ∈ G, the operator C satisfies the covariance conditions

U(g)∗CU(g) = [∆(g)]−
1
2C, CU(g)C−1 = [∆(g)]−

1
2U(g). (44)

With this, it is easily verified that the Wigner transform map W̃ intertwines U�(g)
on B2(H) with the left-regular representation U� on L2(G, dµ) which was defined
in (22), namely

W̃ U�(g) = U�(g)W̃, g ∈ G. (45)

VI The Wigner map and function

We now introduce the Wigner map W which is essentially the Fourier transform
of the map W̃ in Subsect. V.3. We shall assume as in Subsect. III.1 that the
exponential map (10) relates the open neighbourhood N0 of g to an open dense
set Ve in the connected part of the identity of G and such that the complement of
Ve has measure zero. We can then use the exponential map g = eX to introduce
local coordinates over the set Ve in G; in the basis Xi, i = 1, 2, . . . , n we write X =∑n

i=1 x
iXi ∈ g, so the group element g ∈ Ve will map to �x = (x1, x2, . . . , xn) ∈ R

n.
In these coordinates, the left invariant Haar measure on the group will become

dµ(g) → m(X) dX, (46)

where m is a positive Lebesgue-measurable function on N0, and the relations (41)
assume the form∫

N0

(W̃ρ2)(eX)(W̃ρ1)(eX) m(X) dX = Tr [ρ2
∗ρ1] = 〈ρ2|ρ1〉B. (47)

VI.1 The Wigner map

We define a linear map W from the space of Hilbert-Schmidt operators ρ ∈ B2(H)
to functions of X∗

λ ∈ O∗
λ on the coadjoint orbits, by the Fourier transform-type

integral

(Wρ)(X∗
λ) =

[σλ(X∗
λ)]

1
2

(2π)
n
2

∫
N0

e−i〈X
∗
λ ; X〉(W̃ρ)(eX)[m(X)]

1
2 dX, (48)

where σλ is the density function in (19). Using this, Eq. (47) and standard proper-
ties of the Fourier transform, we immediately establish that W maps any Hilbert-
Schmidt operator ρ to an element of the direct integral Hilbert space H̃ defined in
(29)–(31), and that this map is a linear isometry. We call this map W : B2(H) → H̃,
the Wigner map.
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VI.2 The Wigner operator and matrix

In the previous literature [27], [21], [5], it was found useful to define a formal
operator, called theWigner operator , which acts in the Wigner map (48) extended
to the Hilbert space H of this Section. It is

W(X∗) =
[σ(X∗)]

1
2

(2π)
n
2

∫
N0

e−i〈X
∗ ; X〉 C−1 U(e−X) [m(X)]

1
2 dX. (49)

Formally, this defines an operator on H for almost all X∗ ∈ g∗ with respect to
the Lebesgue measure. For any pair of functions φ, ψ ∈ H, or any Hilbert-Schmidt
operator ρ, the Wigner function is

W (φ, ψ | X∗) = 〈φ | W(X∗) | ψ〉H, W (ρ | X∗) = Tr [ρW(X∗)]. (50)

In the group ISO(2) studied in [21] and SU(2) in [5] and [9], the Hilbert space H

has a denumerable basis φλm, m ∈ Jλ an integer and a finite number, respectively.
Then, it is convenient to define the (infinite) Wigner matrix W(X∗) with diagonal
blocks Wλ(X∗), whose matrix elements are

Wλ
m,m′(X∗) = 〈φλm | W(X∗) | φλm′〉H, (51)

and which are reduced to integrals of special functions to be computed.

VI.3 The Wigner function

Introducing the positive Lebesgue-measurable function σ on X∗ ∈ g∗, which as-
sumes the value σλ(X∗) for all X∗ ∈ O∗

λ, we can write Eq. (48) on the whole of
g∗, as

W (ρ | X∗) = (Wρ)(X∗) (52)

=
1

(2π)
n
2

∫
N0

e−i〈X
∗ ; X〉 Tr[U(e−X)ρC−1] [σ(X∗) m(X)]

1
2 dX.

We call this theWigner function of the Hilbert-Schmidt operator ρ, on the dual g∗

of the the Lie algebra of G (or, more accurately, on its coadjoint orbits O∗
λ, λ ∈ J).

The basic properties of the Wigner map and the Wigner function can immediately
be read off their definitions (48) and (52) and compared with the properties listed
in Section II, as we now proceed to show.

VI.4 Reality/sesquilinearity

First note that the Wigner map (48) of elements ρ ∈ B2(H) is linear. Now, let ρ∗

be the adjoint of the operator ρ; then, since N0 is invariant under the interchange
X → −X, and since by virtue of (21)

∆(eX)m(−X) = m(X), (53)
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replacing X by −X in the integral in (52) and using (44), we obtain

W (ρ | X∗) = W (ρ∗ | X∗). (54)

Hence, if ρ is self-adjoint then its Wigner function W (ρ | X∗) is real.
For elements of the type ρ = |φ〉〈ψ|, the map W can be looked upon as

a sesquilinear map from H × H into H̃, i.e., linear in φ, antilinear in ψ and non-
degenerate, in the sense that W(|ψ〉〈ψ|) = 0 if and only if ψ = 0. The corresponding
Wigner functions, written W (ψ, φ | X∗), hence satisfy Eqs. (5) and (6), and are
real (cf. Subsect. II.2).

VI.5 Covariance

Here we verify that the covariance property of Subsect. II.3 holds in our new
generalized setting. In order to do this, consider the representation Ub of G, on
the Hilbert space B2(H) of Hilbert-Schmidt operators,

Ub(g)ρ = U(g)ρU(g)∗, g ∈ G, (55)

where U is the square-integrable representation introduced in Section V.
The representation Ub in (55) is clearly unitary. Now, since dµ(g0gg−1

0 ) =
∆(g−1

0 ) dµ(g), we easily derive that

m(AdgX) =
m(X)

‖Adg ‖ ∆(g)
, X ∈ g, g ∈ G. (56)

Using this relation, ‖Adg ‖ = ‖Ad�g ‖−1 and Eq. (34), we find after some routine
computations that the Wigner map W intertwines the representation Ub with the
covariant coadjoint representation U �, defined in (33), i.e.,

WUb(g) = U �(g)W, g ∈ G. (57)

In terms of the Wigner function [cf. Eq. (7)], this is

W (U(g)ρU(g)∗ | X∗) = W (ρ | Ad�g−1 X
∗), g ∈ G, X∗ ∈ g∗. (58)

VI.6 Overlap and reconstruction formulae

The Wigner map is an isometry since it preserves scalar products: for any two
Hilbert-Schmidt operators, ρ1 and ρ2, we have

〈Wρ1 | Wρ2〉H̃ = 〈ρ1 | ρ2〉B. (59)

This can be written alternatively as the overlap condition [cf. Eq. (8)],∫
g∗

W (ρ1|X∗) W (ρ2|X∗) [σ(X∗)]−1 dX∗ = Tr[ρ∗1ρ2]. (60)
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It is easy to invert the Wigner map using the overlap formula (60). Indeed,
taking ρ2 = ρ and ρ1 = |ψ〉〈φ|, with ψ in the domain of C−1, we obtain∫

g∗
W (|φ〉〈ψ| |X∗) W (ρ|X∗) [σ(X∗)]−1 dX∗ = 〈φ|ρ ψ〉. (61)

Using (52) and noting that φ and ψ are arbitrary, yields

ρ =
1

(2π)
n
2

∫
g∗

[∫
N0

e−i〈X
∗ ; X〉 W (ρ|X∗)U(eX)C−1

(
m(X)
σ(X∗)

) 1
2

dX

]
dX∗.

(62)
We shall refer to this relation as the reconstruction formula.

VII The Wigner function and wavelet transform

There is a very interesting relation between the Wigner function introduced in the
previous Section and the generalized wavelet transform.

VII.1 The wavelet transform

In the square-integrable representation U , any admissible vector η ∈ A, with c(η)
as in (37), can be used to define the (generalized) wavelet transform fη,φ of an
arbitrary φ ∈ H:

fη,φ(g) =
1

[c(η)]
1
2
〈U(g)η|φ〉, g ∈ G. (63)

The wavelet transform is a square-integrable function on G – an element of
the Hilbert space L2(G, dµ). In fact, the map φ �→ fη,φ in (63) may be shown to
be an isometry [13], i.e., ∫

G

|fη,φ(g)|2 dµ(g) = ‖φ‖2. (64)

Note that the standard wavelet transform discussed in the literature [10] is a special
case of the transform (63) when the group G is the affine group of the real line.

VII.2 Coherent states

It is worthwhile to mention at this point the role of coherent states, where the
standard or canonical coherent states belong to the special case of the Heisenberg-
Weyl group. The orthogonality relations (38) imply the resolution of the identity ,

1
c(η)

∫
G

|ηg〉〈ηg| dµ(g) = I, ηg = U(g)η, (65)

and then the vectors [c(η)]−
1
2 η are called coherent states of the group G in the

unitary irreducible representation U (see, e.g., [3], [22]). Thus, the generalized
wavelet transform (63) may be called also the coherent state transform.
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VII.3 The Wigner-wavelet relations

To give explicitly the relation between the Wigner function W (ρ|X∗) in (2) and
the wavelet transform fη,φ(g) of φ ∈ H in (63), for fixed (admissible) η ∈ A and
arbitrary φ ∈ H, consider the Hilbert-Schmidt operators of the form

ρη,φ =
1

[c(η)]
1
2
|φ〉〈η|C. (66)

Comparing now (63) with (52), we conclude that

W (ρη,φ|X∗) =
1

(2π)
n
2

∫
N0

e−i〈X
∗ ; X〉 fη,φ(eX) [σ(X∗) m(X)]

1
2 dX. (67)

This relation is easily inverted, yielding the wavelet transform in terms of the
Wigner function, namely

fη,φ(eX) =
1

(2π)
n
2

∫
g∗

ei〈X
∗ ; X〉 W (ρη,φ|X∗) [σ(X∗) m(X)]−

1
2 dX∗. (68)

VII.4 Bases and coordinates in the Lie algebra

As indicated in Section III, one can introduce bases in the Lie algebra g and its dual
g∗, in terms of which X ∈ g has the coordinate representation �x = (x1, x2, . . . , xn),
while X∗ ∈ g∗ has the coordinates �ξ = (ξ1, ξ2, . . . , ξn); their Lebesgue measures
have the forms given in (15). So let N̂0 be the image, in these coordinates, of the set
N0 ⊂ g (the domain of the exponential map (10), the range Ve of which is assumed
to be dense in G with its completment having zero Haar measure). Denote by X̂i

the Hilbert space operators that represent the basis elements Xi ∈ g, i.e., the
operators on H such that

U(eXi) = e−iX̂i . (69)

Finally, denote by �̂
X the vector operator with components X̂1, X̂2, . . . , X̂n.

In these terms the Wigner function (52) and its inverse (62) can be written

W (ρ | �ξ ) =
1

(2π)
n
2

∫
N̂0

Tr
[
ei(

	̂
X−	ξ )·	xρC−1

]
[σ(�ξ ) m(�x)]

1
2 d�x, (70)

ρ =
1

(2π)
n
2

∫
g∗

[∫
N̂0

e−i(
	̂
X−	ξ )·	xW (ρ|�ξ )

× C−1

[
m(�x)

σ(�ξ )

] 1
2

d�x

 d�ξ. (71)

Similarly, all other coordinate-free expressions appearing earlier can be written in
these coordinates, which are most useful for computational purposes. In particular,
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the overlap condition (60), for ρ1 = |φ1〉〈ψ1| and ρ2 = |φ2〉〈ψ2| becomes∫
g∗

W (ψ1, φ1|�ξ ) W (ψ2, φ2|�ξ ) [σ(�ξ )]−1 d�ξ = 〈φ1|φ2〉〈ψ2|ψ1〉. (72)

In these coordinates, the covariance condition (7) or (58) assumes the form:

W (U(g)ψ,U(g)φ|�ξ ) = W (ψ, φ|MT (g)�ξ ), g ∈ G, φ, ψ ∈ H, (73)

where M(g−1)T is the matrix of the coadjoint map Ad�g.

VIII Wigner functions for the the two-dimensional affine group

In this section we apply the theory presented above to the important particular
case of the affine group of the line, Gaff , consisting of all transformations of the
form x �→ ax + b, x ∈ R, with a > 0, b ∈ R. A group element is thus given by
a pair (a, b) ∈ R

+
∗ × R. (Note that R

+
∗ denotes the positive real line without the

origin.) Group multiplication replicates matrix multiplication when we represent
group elements by the matrices

g =
(
a b
0 1

)
. (74)

Wigner functions for this group have been obtained earlier in [7], using different
methods. Our analysis reproduces the same results.

VIII.1 Affine algebra and group matrices

The Lie algebra gaff of Gaff is generated by the two elements

X1 =
(

1 0
0 0

)
, X2 =

(
0 1
0 0

)
, (75)

so that the one-parameter subgroups of Gaff are

e(log a)X1 =
(
a 0
0 1

)
, ebX2 =

(
1 b
0 1

)
. (76)

Thus, for a general element in the Lie algebra

X = x1X1 + x2X2 =
(
x1 x2

0 0

)
, (77)

the group element obtained from the exponential map is

g = eX =
(
ex

1 x2

x1 (ex
1 − 1)

0 1

)
=
(
a b
0 1

)
. (78)
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From here follows the inverse map from the group to the algebra,

X = log g = x1X1 + x2X2, x1 = log a, x2 =
b log a
a− 1

. (79)

Since every X ∈ gaff is mapped to an element g ∈ Gaff by the exponential map
(78), we identify its domain N̂0 with the full real plane and use �x = (x1, x2) ∈ R

2

as the coordinates for the elements of the Lie algebra.

VIII.2 Haar measures

The left- and right-invariant measures on Gaff are easily computed in the polar
coordinates (78),

dµ(g) = dµ�(g) =
da db

a2 =
1 − e−x

1

x1 dx1 dx2, (80)

dµr(g) =
da db

a
=

ex
1 − 1
x1 dx1 dx2, (81)

and the modular function is
∆(g) =

1
a
. (82)

Writing as in (46), we find

da db

a2 = m(�x) d�x, m(x1, x2) =
1 − e−x

1

x1 . (83)

VIII.3 Adjoint and coadjoint action

The adjoint action of the group Gaff on an element (77) of the Lie algebra is easily
computed to be

AdgX = gXg−1 =
(
x1 −bx1 + ax2

0 0

)
. (84)

The matrix of this transformation which acts on (column) vectors �x = (x1, x2)� ∈
R

2 is

M(g) =
(

1 0
−b a

)
. (85)

On the dual of the Lie algebra, X∗ ∈ g∗ has coordinates �ξ = (ξ1, ξ2)�; on
this column vector, the coadjoint action is represented by the inverse transpose
matrix,

M �(g) = M(g−1)� =
(

1 ba−1

0 a−1

)
. (86)

The determinants of these matrices are

‖Adg ‖ = a = ‖Ad�g ‖−1. (87)
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The coadjoint representation of this group in Eq. (25), V
�

, is carried by the
Hilbert space L2(R2, d�ξ ) and has the form

(V
�

(g)F̂ )(�ξ ) = a
1
2 F̂ (M(g)��ξ ) = a

1
2 F̂ (ξ1 − bξ2, aξ2). (88)

VIII.4 Coadjoint orbits of the affine group

The coadjoint orbits of the affine group are found from the action of the matrices
(86) on fixed vectors ξ ∈ R

2. The following orbit structure emerges:

1. The orbit obtained by acting with the matrices M(g−1)� on the column
vector (0, 1)�,

O∗
+ = {�ξ+ = (ξ1, ξ2) ∈ R

2|ξ2 > 0} = R × R
+
∗ . (89)

2. The orbit obtained by acting on (0,−1)� with the same matrices,

O∗
− = {�ξ− = (ξ1, ξ2) ∈ R

2|ξ2 < 0} = R × R
−
∗ . (90)

3. Applying the matrices to the column vector (α, 0)�, for each α ∈ R we obtain
an orbit that consists of the single point (α, 0); this we denote by O∗

α.

We may thus characterize the foliation of the dual of the Lie algebra g∗
aff , by

the set J = {+,−,R}. This we identify with the real plane,

R
2 =

⋃
λ∈J

O∗
λ. (91)

Note that in this classification, the last set of orbits O∗
α are a set of Lebesgue

measure zero in R
2, while the other two orbits O∗

± are open sets in R
2 and their

union is dense. Under the coadjoint action, the latter two orbits carry the invariant
measures

dΩ±(�ξ ) =
dξ1 dξ2

(2π)
1
2 |ξ2|

, �ξ ∈ O∗
±. (92)

Comparing with (19), we now define a measure dκ(λ) on the Borel sets of the set
J = {+,−,R} as follows:

κ({±}) = 1, κ({E}) = 0, (93)

for any open set E ⊂ R. Thus the direct integral Hilbert space H̃ of Eq. (29) for
the covariant coadjoint representation is now just an orthogonal sum,

H̃ = H+ ⊕ H−, where H± = L2(O∗
±, dΩ±). (94)

Elements in H̃ consist of pairs of functions, F̂ = (F̂+, F̂−), with F̂± ∈ H±.
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VIII.5 Covariant coadjoint representation

The covariant coadjoint representation of Gaff is carried by H̃; as we defined it in
Subsect. IV.3, it has the form

(U
�

(g)F̂ )(�ξ ) = F̂ (M(g)��ξ ) = F̂ (ξ1 − bξ2, aξ2), F̂ ∈ H̃, (95)

where ξ1 is the translation parameter in the affine group while ξ2 is the scale
parameter.

In order to compute the explicit form of the Wigner function for the affine
group, it is necessary to use its unitary irreducible representations; there are only
two such representations. To examine them, consider the representation U(g) on
the Hilbert space L2(R, dt),

(U(g)φ)(t) = a−
1
2 φ
( t− b

a

)
, φ ∈ L2(R, dt), g = (a, b) ∈ Gaff . (96)

This representation is unitary but not irreducible. To isolate its irreducible com-
ponents we go over to the Fourier-transformed Hilbert space L2(R, dω), where the
representation is

(Û(g)φ̂)(ω) = a
1
2 φ̂(aω)e−ibω, φ̂ ∈ L2(R, dω), g = (a, b) ∈ Gaff . (97)

It is now clear that each of the two subspaces of functions defined on the intervals
(0,∞) and (−∞, 0),

H
± = L2(R±, dω), (98)

are stable under the action of the Û(g), and in fact are irreducible subspaces
under this action. We shall denote the restrictions of Û to these two subspaces by
Û±, respectively. The two subrepresentations are then inequivalent, but both are
square-integrable in the sense of Section V.

VIII.6 Wigner functions for Û(g)+

We shall now derive Wigner functions for the unitary irreducible representation
Û+; analogous results hold in an obvious way for the representation Û− as well.

A vector η̂ ∈ H+ is admissible in the sense of (37), if and only if it satisfies
the condition (see, e.g., [10]),∫ ∞

0

2π
ω
|η̂(ω)|2 dω < ∞. (99)

This means that η̂ must lie in the domain of the positive unbounded operator C,
whose action is

(Cη̂)(ω) =
[
2π
ω

] 1
2

η̂(ω), ω ≥ 0. (100)
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Using (92), we identify the density σ appearing in the Wigner function (70) to be

σ(�ξ ) = |ξ2|, �ξ ∈ O∗
+ ∪O∗

−. (101)

Let ψ̂ ∈ L2(R+, dω) be any vector in the domain of the operator C−1 (i.e.,
ψ̂ = Cη̂ for some admissible vector η̂), and let φ̂ be an arbitrary element in
L2(R+, dω). Then, combining (70) with (83), (97), (99) and (101), after some
computation we obtain

W (ψ̂, φ̂ | ξ1, ξ2) =
1

(2π)
1
2

∫ ∞

−∞
ψ̂

(
ξ2e

x
2

sinch x
2

)
ξ2 e

−iξ1x

sinch x
2

φ̂

(
ξ2e

−x
2

sinch x
2

)
dx, (102)

which is valid for all ξ2 > 0, and where

sinch (u) = (sinhu)/u.

The above Wigner function was obtained using the irreducible representation
Û+, and it lead to Wigner functions which are supported on the orbit O∗

+. Had we
used Û− we would have obtained an analogous function supported on O∗

−. When
we use the reducible representation Û = Û+ ⊕ Û− given in (97), for arbitrary
φ̂ ∈ L2(R, dω) and ψ̂ ∈ L2(R, dω) satisfying∫ ∞

−∞

|ω|
2π

|ψ̂(ω)|2 dω < ∞, (103)

we find the Wigner function

W (ψ̂, φ̂ | ξ1, ξ2) =
1

(2π)
1
2

∫ ∞

−∞
ψ̂

(
ξ2e

x
2

sinch x
2

)
|ξ2| e−iξ1x
sinch x

2
φ̂

(
ξ2e

−x
2

sinch x
2

)
dx, (104)

which is now valid for all �ξ ∈ R
2.

VIII.7 Affine covariance

It is easily verified that the Wigner function (102) satisfies the correct covariance
condition (7)–(73)–(86),

W (Û(g)ψ̂, Û(g)φ̂ | �ξ ) = W (ψ̂, φ̂ | ξ1 − bξ2, aξ2). (105)

Comparing with (57) and (95), we see that the Wigner map intertwines the repre-
sentation Ub(g)ρ = Û(g)ρÛ(g)∗ with the covariant coadjoint representation U

�

(g)
in (95). The overlap condition (72) is also straightforward to verify.
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VIII.8 Marginality relations of the affine Wigner function

Although the Wigner functions obtained above are defined on all of R
2, they should

be regarded as functions defined on the orbits O∗
+ ∪O∗

−. This is because we would
like to think of the Wigner functions as phase space distributions, and these orbits
have the structure of symplectic manifolds with invariant measures, and hence are
classical phase spaces. The interpretation of the Wigner function as a distribution
over the phase space O∗

+ ∪O∗
− is further supported by the following observations.

Consider the affine Wigner function (104) of one wavefunction, W (ψ̂ | �ξ ) =
W (ψ̂, ψ̂ | �ξ ). Integrating this over the coadjoint orbits with respect to the invariant
phase space measure (92), we obtain the full projection to a positive number,∫

O∗
+∪O∗

−

W (ψ̂ | �ξ ) dΩ±(�ξ ) =
∫
O∗

+∪O∗
−

W (ψ̂ | �ξ )
dξ1 dξ2

(2π)
1
2 |ξ2|

=
∫ ∞

−∞
|ψ̂(ω)|2 dω = ‖ψ̂‖. (106)

For an arbitrary density matrix ρ, the result is∫
O∗

+∪O∗
−

W (ρ | �ξ ) dΩ±(�ξ ) = Tr ρ. (107)

Therefore, though the Wigner function, even for a pure state, is not in general pos-
itive, its phase space integral has the proper measurement-theoretic interpretation
as the squared norm of the state.

The well-known projection or marginality properties satisfied by the original
Wigner function discussed in Section I, cannot be expected to hold in the affine
case. We do have however, a similar relation when we project (integrate) over the
translation parameter ξ1 of the affine group, to find the marginal distribution over
the scale parameter ξ1, namely

1
(2π)

1
2

∫ ∞

−∞
W (ψ̂ | �ξ )

dξ1
|ξ2|

= |ψ̂(ξ2)|2. (108)

In the scale parameter ξ2 however, the marginality relation has a more complicated
form. Indeed, a straightforward manipulation of integrals leads to the relation∫ ∞

−∞
W (ψ̂ | �ξ )

dξ2
|ξ2|

=
1

(2π)
1
2

∫ ∞

−∞

∫ ∞

−∞
e−iξ1x ψ̂(ωe

x
2 )ψ̂(ωe−

x
2 ) dx dω. (109)

On the other hand, the choice of phase space coordinates (ξ1, ξ2), which we have
adopted here, is not the only possible one and a different choice could lead to a
simpler form for this marginality condition. Unfortunately, there does not seem to
exist an obvious “natural” choice of coordinates for general phase spaces.
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IX Wavelet transform and Wigner function in the affine group

It is worthwhile to display in detail the relationship between the Wigner functions
of the affine group and the wavelet transform, since both the wavelet transform and
the Wigner function are used extensively in image reconstruction computations.
As pointed out in the general setting in Section VI, Eqs. (67) and (68), there is
an intimate connection between the two.

IX.1 Coherent states of the affine group

Consider the (doubly reducible) representation of the affine group given in (97).
A mother wavelet is any vector (a signal) η̂ in the carrier Hilbert space L2(R, dω)
of the representation, which satisfies the admissibility condition [10] of Eqs. (99)
and (99), ∫ ∞

−∞

2π
|ω| |η̂(ω)|2 dω < ∞. (110)

This implies in particular that η̂(ω) must vanish at the origin. Now choose a
particular mother wavelet, normalized by (37) so that

c(η̂) =
∫ ∞

0

da

a2

∫ ∞

−∞
db |〈Û(a, b)η̂|η̂〉|2 = 1. (111)

Using this mother wavelet we define a family of wavelets, or equivalently
coherent states of the affine group,

η̂a,b = Û(a, b)η̂, (a, b) ∈ Gaff . (112)

In view of (96), these are simply functions in the inverse Fourier domain which are
scaled and translated versions of the mother wavelet, and with the same normal-
ization (111). The resolution of the identity (65) on the Hilbert space L2(R, dω)
now assumes the form ∫ ∞

0

da

a2

∫ ∞

−∞
db |η̂a,b〉〈η̂a,b| = I. (113)

IX.2 Wigner-wavelet relations

Consider an arbitrary signal φ̂ ∈ L2(R, dω) and its wavelet transform in the trans-
lation and scale parameters a, b of the wavelet family,

fη̂,φ̂(a, b) = 〈η̂a,b|φ̂〉. (114)

Next, for the chosen mother wavelet η̂, note that the function

(Cη̂)(ω) =
2π
|ω| 12

η̂(ω), ω ∈ R, (115)
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is admissible and hence vanishes at the origin ω = 0. Then, specializing the integral
in (67) to the affine group and using (78), we find the relation between the wavelet
transform and the Wigner function given by

W (Cη̂, φ̂ | �ξ ) =
1
2π

∫
R2
e−i	x·

	ξ fη̂,φ̂

(
ex

1
, x2e

x1
2 sinch x1

2

) ( |ξ2|
e

x1
2 sinch x1

2

) 1
2

d�x.

(116)
In this expression the choice of the mother wavelet η̂ is fixed, and the equation
refers to φ̂ only. It is a routine matter now to invert this relation and to write the
wavelet transform in terms of the Wigner function,

fη̂,φ̂

(
ex

1
, x2e

x1
2 sinch x1

2

)
=

1
2π

∫
R2
ei	x·

	ξ W (Cη̂, φ̂ | �ξ )
(
e

x1
2 sinch x1

2

) 1
2 dξ1 dξ2

|ξ2|
1
2

(117)

X The standard Wigner function revisited

We finally go back to the well-known Wigner function in (1) at the beginning
of this paper and see how it fits into the same theoretical considerations. (It will
actually be necessary to do a somewhat different constuction in this case, since the
representation in question will not be square integrable with respect to the entire
group.) As mentioned in the Introduction, the Wigner function has its origin in the
Heisenberg-Weyl group GHW (of the canonical commutation relations). This group
is the central extension of the abelian group of R

2 and is topologically isomorphic
to R × R

2. Denoting a generic element in GHW by g = (θ, ξ, η), the multiplication
rule is,

(θ1, ξ1, η1) (θ2, ξ2, η2) = (θ1 + θ2 + 1
2 [η1ξ2 − η2ξ1], ξ1 + ξ2, η1 + η2). (118)

The corresponding Lie algebra gHW is generated by the three elements X0,X1,
X2, satisfying the Lie bracket relations [X1,X2] = X0 and [Xi,X0] = 0, i =
1, 2. The central element X0 generates the phase subgroup Θ, consisting of group
elements of the type (θ, 0, 0). We shall actually use the three elements X0,X1
and −X2 as basis vectors for the Lie algebra, and write its general element as
X = x0X0 + x1X1 − x2X2. From the relation

g0gg
−1
0 = (θ + η0ξ − ηξ0, ξ, η), (119)

we readily derive the matrices of the adjoint and coadjoint actions in this basis.
They are

M(θ, ξ, η) =

 1 η ξ
0 1 0
0 0 1

 and M �(θ, ξ, η) =

 1 0 0
−η 1 0
−ξ 0 1

 , (120)
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respectively. The coadjoint action on a vector �γ = (γ0, γ1, γ2)T is,

M �(θ, ξ, η)�γ =

 γ0
γ1 − γ0η
γ2 − γ0ξ

 . (121)

From this we see that the coadjoint orbits of GHW are of the following types:

1. The planes
O∗
λ = {(λ, �x)T | �x ∈ R

2}, (122)

one for each λ �= 0 and generated from the vector (λ, 0, 0)T .

2. The singletons
O∗
	λ

= {(0, �λ)T }, (123)

one for each �λ ∈ R
2 and generated from the vector (0, �λ)T .

The invariant measures on the orbits O∗
λ are simply the Lebesgue measures d�x on

the planes.
Corresponding to each one of the non-degenerate orbits O∗

λ, there is a unitary
irreducible representation Uλ of GHW carried by the Hilbert space H = L2(R, dx):

(Uλ(θ, ξ, η)φ)(x) = eiλθ eiλη(x−
ξ
2 ) φ(x− ξ). (124)

Since we may also write,

Uλ(θ, ξ, η) = Uλ(eX) = eiλ(θI+ηQ−ξP ), X = x0X0 + x1X1 − x2X2, (125)

with
(Qφ)(x) = xφ(x) and (Pφ)(x) = − i

λ

∂φ(x)
∂x

, (126)

the Hilbert space generators corresponding to X0,X1 and X2 are seen to be I,Q
and P , respectively, with the further identification, x0 = −θ, x1 = −η and x2 =
−ξ. Let us consider the case λ = 1 (equivalent to setting � = 1) and simply write
U for the corresponding representation. Also, we shall write U(0, ξ, η) = U(ξ, η).
This representation is not square-integrable with respect to the whole group GHW,
but only with respect to the homogeneous space GHW/Θ � O∗

λ � R
2 [2, 4].

However, it is possible to adapt the theory of square integrable representations,
as outlined in Section V, to this situation [4, 14]. Basically, we work with the
operators U(ξ, η), which give a multiplier representation of R

2 and which admit
the following orthogonality relations:

1
2π

∫
R2

〈U(ξ, η)φ1|ψ1〉〈U(ξ, η)φ2|ψ2〉 dξ dη = 〈φ1|φ2〉〈ψ1|ψ2〉, (127)

for arbitrary vectors φ1, φ2, ψ1 and ψ2 in the Hilbert space. The operator C in (38)
is in this case (2π)

1
2 I. Since the phase subgroup Θ has now been factored out, the
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Wigner transform has to be defined using the remaining two generators Q and P
and will be a function on the coadjoint orbit O∗

λ=1 � R
2. (These considerations will

be made more rigorous in a subsequent publication, where we intend to deal with
Wigner functions obtained from group representations which are square integrable
only with respect to a homogeneous space. It will turn out that we shall have to
extend the general theory to include certain types of reducible square integrable
representations.)

It is also clear that both the densities σ and m, appearing in the expression
for the Wigner function in (70), are constants in this case and we set them equal
to unity. The Wigner function, for arbitrary Hilbert-Schmidt operators ρ, now
assumes the form,

W (ρ | γ1, γ2) =
1
2π

∫
R2
ei(γ1η−γ2ξ) Tr[e−i(Qη−Pξ)ρ] dξ dη. (128)

Taking ρ = |ψ〉〈φ|, for wave functions φ, ψ ∈ H, writing (q, p) for (γ1, γ2) and
simplifying the resulting expression, we easily obtain

W (φ, ψ | q, p) =
1
2π

∫
R

e−ixp φ(q − 1
2x) ψ(q + 1

2x) dx, (129)

which is exactly the same expression as in (1).

XI Conclusion

The object which is crucial to our construction of the Wigner function is a square-
integrable group representation [2]. Such a representation belongs to the discrete
series of the group, and not every group has a representation in this series. The
groups studied thus far, the Heisenberg-Weyl group [27], the Euclidean group [21],
and the spin group [5], have these representations, are unimodular, and enjoy
several other simplifying properties, such having global polar coordinates.

The affine group is the simplest example where one of these properties —
unimodularity— is transcended. We have refined the definitions of the Wigner
operator and function given in the previous literature so that the affine case is
included cogently, and we have compared the results on wavelets richly contained
in the literature. We have found that indeed there is a close relation between the
Wigner function and the wavelet transform: they are essentially Fourier transforms
of each other. This has been noted before in the case of the Heisenberg-Weyl
group, where the Wigner and the radar Woodward ambiguity functions [28] are
also Fourier transforms [23]. The important advantage of the Wigner function
(52) is that it is defined on a coadjoint orbit. This ensures its interpretation as a
(quasi-)distribution on a phase space.

The fact that coherent states which satisfy a resolution of the identity of the
type (65) are also associated to square integrable representations, gives the link
between generalized wavelet transforms and generalized Wigner functions. In a
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following publication we shall indicate how the construction of this paper can be
extended to certain other types of representations that are not square-integrable,
such as the continuous series of Sp(2,R) representations.
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[11] H. Führ and M. Mayer, Continuous wavelet transforms from cyclic representa-
tions: A general approach using Plancherel measure, Univ. München preprint
(July 1998).
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