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For many years quantum states of matter in a classical
gravitational background have been of great interest in
physical models. Examples:

» Neutron interferometry in laboratories on the Earth. It
captures the effects of the gravitational field into
quantum phases associated to the possible trajectories of
a beam of neutrons, following paths with different
intensity of the gravitational field. (Colella et al 1975)

» Another instance of the description of quantum states of
matter in classical gravitational fields is Hawking's
radiation describing the process of black hole evaporation.
This process involves relativistic quantum particles and
uses quantum field theory in curved spacetimes.
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paremeters: a,w, m,e, g, N\, {, a.



Equation (1) can be represented by the line element
ds® = goodt® + 2go3dtdd + g1dr® + good6® + gzzdg®,  (4)

which has a non-diagonal element that represents the axial
symmetry and the metric coefficients are:
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In order to describe the motion of spinning particles in a curved
spacetime, the vierbein chosen is:
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As seen by long distance observers, the hovering
position has a four-velocity defined by

ul' = (dt/dr, 0, 0, 0) = ((—goo) V% 0, 0, 0).

For a free-falling particle the four-velocity due the
frame-dragging, as seen by the same distant
observers, is described by

ul! :\/ 6% (1 0, 0, —@>
fd 800833 — (4‘3’03)2 833




In the present work, the frame-dragging velocity has
to be measured by the hovering observer as a local
inertial frame velocity and it can be obtained by
projecting out the four-momentum mut; of the
particle over the four-vector velocity u, of the
hovering observer

Uggthy, = —E = =7y, (8)

where E is the relativistic energy per unit mass of
the particle with respect to a local (hovering)
observer. Here ytq = (1 — vZ)~'/2. Moreover

u? = n?eyluy, and therefore

ugy = (coshn, 0,0, sinhn). (9)



Now we consider two observers and one EPR source
on the equator plane 6 = 7/2. The observers are
placed at azimuthal angles ¢ = +£® and the EPR
source is located at ¢ = 0. The observers and the
EPR source are assumed to be hovering.

From the perspective of a zero angular momentum
observers (ZAMO), the local velocity of the
entangled particles is given by

UEPR: (COSh Ca 07 07 SinhC)a (10)

where vgpr = tanh ( is the speed of particles in the
local inertial frame of the ZAMO.
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After the pair of entangled spin-1/2 particles is
generated at the EPR source, they leave it and
follow a circular path around a black hole. In
spherical coordinates on the equatorial plane

0 = 7 /2, the velocity of particles has two relevant
components, the temporal one and the spatial one
with ¢-coordinate at constant radius r. Thus, for
the hovering observer, the motion is measured by
the proper-velocity with v = tanh&. That is,

u? = (cosh &, 0,0, sinh &), therefore the general
contravariant four-velocity is

ut = eyfcosh& + e3’sinhé, (11)
u? = e?sinh¢,

such that v u, = —1.



In order the particles describe circular motion, we
must apply an external force that compensates both
the centrifugal force and the gravity. The
acceleration due to this external force is

a'(x) = u"(x)V, u*(x). (12)

On the equatorial plane the acceleration then
becomes
a” = (ef)’I§,cosh? ¢
+ [(e5)T5o + (63%)°Th 5 + 2e3' 3T 5] sinh* ¢
+2ept(e3°T 55 + €3tT5,) sinh € cosh €,
(13)
where 7 are the usual Christoffel's symbols.



The change of the local inertial frame consists of a
boost along the 1-axis and a rotation about the
2-axis calculated by

X7p(x) = —u"w,?p(x), (14)
where the connection one-forms are defined as
wub(x) = —&p" (x) V€% (x) = €°,(x)V ep” ().

(15)
In our particular situation, the connections of
interest are given by:

w1 = e"e% MY, + e"e% 3,
wt13 = e3te1,F(1JO + eg¢elrr(1,3, (16)
w¢01 = elreotl'(1)3 + elre0¢r“;’3,
wels = estel, M5 + e3%el, 5.



The relevant boost is described by
% = —eotelr(eotrgl + e0¢rgl)cosh£
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The infinitesimal Lorentz transformation
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The boost along the 1-axis and the rotation about the 2-axis are
respectively
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(18)



The change of the spin is obtained by computing the infinitesimal
Wigner rotation

No(x)pr(x) — Ako(x)p! (%) .

P =X T m

(19)

In particular, the rotation about the 2-axis through a certain angle
reads:
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Finally, from the tetrad given in Eq. (6), it can be
shown, after some algebra, that the previous
expression (20), can be expressed as

ol. — _ cosh(2¢) ( 33g00 ~ gm0 8g03>
2800/ £11[(803)? — 8oo&33] or or
sinh(2¢)

 4g00[(g03)? — go0g33)y/E11

X [goo (g33 %0 _ giq 85?) + 2803 (goa %80 _ g0 65?)} :
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First of all we recall that in the case of the curved
spacetime, the one-particle quantum states
|p?(x), o; x) transforms under a local Lorentz
transformation as

U(A(x))]p*(x ZD” X)) AP (x), o' x),

(22)
where W?,(x) = W?,(A(x), p(x)) is the so called
local Wigner rotation.



If the frame-dragging is taken into account on the
local inertial frame velocity u?, it will affect the
previous local velocity transformation and then the
total velocity will be written as

ui = (cosh&4,0,0, sinh&L), where & = ( £ 1.
After a proper time CD/ui, each particle reaches the
corresponding observer. Thus the finite Wigner
rotation can be written as

1 0 0 0

0 cos©;r 0 +£sin©4

0 0 1 0 ’
0 Fsin©L 0 cosO.

W (£9,0) =

(23)
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Then the required Wigner rotation is given in the
following form

DYD(W(£d,0)) = exp <$/—@i) (24)

where o, is the Pauli matrix. Now we can define
the four-momentum of the particle as seen by each
hovering observer. Thus, the spin-singlet state for
entangled particles is given by

) = %npim 0)[p*. 1:0) — [p. 1; 0)|p? 1 0)].
(25)



Therefore after the finite Wigner rotation, the new total quantum
state is given by |¢') = W(x®)[1)). Consequently in the local
inertial frames at the corresponding positions ¢ = ® and —®, each
particle state can be written as

©

PLA£0) = cos E[pl. 1 £0) £ sin 2 [pl, 1;£0), (26)
© ©
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Thus the entangled state is described by the combination
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It is easy to see that the final quantum state reads
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VI. Spin precession angle in Expanding and Twisting
Plebanski-Demianski Black Hole
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Now we study the spin precession angle of the spin-1/2 systems of
entangled particles in the spacetime described by the
Plebanski-Demiariski metric with frame-dragging.

Thus, it is easy to show that the coefficients A and B from the
spin precession angle A on the equator (§ = 7/2), given by Eq.
(30), are written as

av'D
App = 2.2 213/2
2(r2 + 12)(D — a?)3/
1
Bory —
PP (1 ) (D — 22)32
x[4Dr(D — a%) — (a*r? + Dr? + DI? + a?I?)D'],

[(r* + 12D —2r(D — 2%)],

(32)
where D’ is defined by
oD ok A 6nor?
r_ Y= = n 3 .
D' = 5 <w2 + 3> r +2er—2m.  (33)
The frame-dragging local inertial frame velocity is given by

D
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The KN(A)dSNUT spacetime represents a
non-accelerating (o = 0) black hole with mass m,
electric and magnetic charges e and g, a rotation
parameter a and a NUT parameter / in a de Sitter
or anti-de Sitter background with non-vanishing
cosmological constant A. This case contains in turn
the two limits: |a|] > |/| and |a| < |/|, that
correspond to the Kerr solution with NUT and the
NUT solution with rotation respectively.



After setting the acceleration parameter equals zero i.e. a = 0, the
parameters in relation (3) become

k= (1—PA)(a® - PP),

_ 1 2 2
5—1—(33 +2/>/\, (35)
n=1+ %(32 — 4%)IA.

Thus, the metric (1) is reduced to
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In the case when e = g = A = 0 the spin precession angle
explicitly written in terms of the physical parameters is given by

AKerr—NUT =
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Kerr black hole
From equation (30) with coefficients (32) and parameters
e = g =/ = A =0 the spin precession angle is reduced to

—2+/Damsinh ¢ 4 (H — mD) cosh ¢ VDam sinh ¢ cosh Nk
Ak =¢ |: (r2 —2mr)3/2 cosh i + (r2 — 2mr)3/2 cosh? n — cosh? ¢ R
where
D = r*—2mr+2°, (40)
H = r*—4mr’ 4+ 4m?r — a°m, (41)
D
cosh K rvVD #1, (42)
V(r=2m)(r3 + a%r + 2ma?)
with the coefficients A and B being
D H—mD

Ax = _& By = m (43)

(r2 —2mr)3/2° (r2 —2mr)3/2°



Schwarzschild-NUT Black Hole
This is more clearly stated when the Eq. (30) is simplified by
setting the parameters e =g=a=A=0

r3 —3mr? — 3/2r + m/?
A =0 cosh ( cosh -1,
NUT <(r2 RV —amr P ¢ coshnnur )
(44)
where
2 2
re+1
cosh = 1
INUT VA —212r2 +8ml2r + 5/4 7
The coefficients A and B are given by
3 —3mr2 = 3/%r + mi? (45)

Axur =0, Baut = .
NUT NUT (r2 4 P)Vr?2 —=2mr — 2

The precession angle Axyt diverges precisely at r = ryyT, where

wNUT = m+vVm? + 2. (46)

The positive root represents the outer Schwarzschild-NUT horizon.






Schwarzschild-(Anti)de Sitter Black Hole
The spin precession angle in this case is given by

-3
Apygs = @ ! m cosh(—11,
\/r2 —2mr — %/\r4
(47)
with A and B of the following form
r—3m
Ayas =0, Bayas =
\/r2 —2mr — %/\r4
(48)

and coshnayas = 1.
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Reissner-Nordstrom Black Hole

This case corresponds to a Schwarzschild black hole with
non-vanishing charges e and g, after setting /, A and a to zero.
The Reissner-Nordstrom spacetime is also a spherically symmetric
solution.

The spin precession angle is then reduced to

r> —3mr + 2% + 2g°
r\/r2 —2mr+ €2 + g2

Apn =@ ( cosh ( — 1) , (49)

where the functions A and B are

_ r> —3mr + 22 + 2g2
r/r2 —2mr + €2 + g2

Arn =0, BrN (50)

and coshnpy = 1.
This result reproduces completely our previous result after adding
the magnetic charge g.



Schwarzschild Black Hole

Finally it is easy to recover the Schwarzschild spin
precession by setting a,e,g,/,A=0. The
coefficients and frame-dragging are reduced to

As =0, Bs = (r—3m)/+/r?> —2mr and

coshng = 1. Consequently, the expression (30) is
given by

Ag = <i cosh ¢ — 1) , (51)

which is precisely Eq. (51) of Terashima-Ueda
paper.



In order to simplify our analysis we shall consider in this subsection
the case of vanishing parameters A\ =e=g=1/=0.

with an arbitrary o and using the remaining scaling freedom to put
w = a, then the Plebanski-Demianski metric is reduced to

1 D p2 P sin? 6
2 .2 2 2 2 2 2 2 2
ds® = — | ——|[dt — asin® 0d¢]” + —dr® + —(adt — (r° + a°)d¢p)” + p*——db s 52
Q2 ( p? [ ! D p? ( ( )dé) ’ P (52

where the parameters (2) and (3) are given by

e=1-— a2a2,
n= —aam, (53)
P = sin 0(1 — 2amcosf + a’a’ cos? 0)
and
p? = r?> + a®cos? 0,
Q=1-arcosb, (54)

D =a>—-2mr+ (1—a%a®)r? +2a°mr® — o?r*.



The previous metric has four singularities when 6 = /2, that is,
we can factorize D as

where

D= (r—r)(r—r)(1-a??),

re = m+vm?— a2

The acceleration horizon:

1

Facc = —

After some easy manipulations, the coefficients for the spin
precession angle are given by

AAccRot =

BAccRot =

av'D

2r(D — a2)3/2

1

2r(D — a2)3/2

[I’D/ - 2(D - ‘92)]7
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where

oD
D' = o = —2m+2(1 — a%a®)r + 6a2mr® — 4a°r3 (59)
p

and the frame-dragging velocity is

D
h ccRot = 2 .
cosh MaccRor = 1 \/(D Y peaea capery) Y

One can show that we can recover the Kerr spacetime results
reviewed in previous section, after setting vanishing acceleration
(aw = 0). Therefore, we shall consider the effect of acceleration
over the spin precession angle.




C-metric

From the pair of accelerated and rotating black holes represented
by the metric, we can consider the limit in which a — 0. In this
case, the metric has the form of the C-metric and thus the
coefficients reduce to

a?mr? +r—3m

A —metric — 07 B —metric — ;
Cmet G met \/(r2 —2mr)(1 — a?r?)
(61)
and
cosh ¢ _metric = 1. (62)

Then, the spin precession angle for the C-metric is

a?mr? +r—3m

V(2 =2mr)(1 — a2r?

ACfmetric =o ( ) cosh C - 1> . (63)

Moreover it is easy to see that this equation reduces to
Schwarzschild case when o = 0. In addition, we can see from Eq.
(63) that it is divergent at the Schwarzschild radius r = 2m and at

the acceleration horizon, that is Ac_metric — 00 as.r — o~ L.
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