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The dimming of the light that arrives to us from the Supernovae Ia is interpre-
ted as an accelerated expansion of the universe, i.e. light has to travel a longer
distance than the one expected according to Hubble’s law.
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The unknown cause of that acceleration has been attached to DARK ENERGY

AN UNKNOWN ENTITY
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Are there alternatives to dark energy?

Changing the geometry:

Spherically symmetric inhomogeneous models

Lemaitre-Tolman-Bondi (J. Garcia-Bellido, arXiv:0810.4939 ):

Spherically symmetric spatial sections:

ds2 = −dt2 + χ2(r, t)dr2 + A2(r, t)dΩ2

matter source: T µ
ν = −ρMδµ0 δ0

ν

Two different components to the rate of expansion (longitudinal and trans-
versal) that induces a differential growth of the local volume of the universe,

LTB model can be used to fit the observed dL without the need of dark energy
(PRD 73083519(2006)). Placing the observer at the centre of a big underdensity
(VOID).
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The observed isotropy

The temperature observed around us is isotropic and homogeneous to a precision of 10−5, such
isotropy was already reached when z ≈ 1100.
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The homogeneous and isotropic geometry of Robertson-Walker

ds2 = −c2dt2 + a2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
,

The Friedmann equations:
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)2

= H2
0
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where we are considering zero curvature.
The Hubble parameter H(z),

H2(z) =

(
ȧ

a

)2

=
∑
i

8πGρi
3H2

0c
2
,

Matter is assumed a perfect fluid, EoS Pi = wρi for the i matter component
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The Universe has large scale structure
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Light propagates through locally inhomogeneous regions

Light travels a distance= c
H0
z = 3

7
× 104zMpc

SNe Ia: 0,01 ≤ z ≤ 1,4; GRBs: 3 ≈ z ≈ 6
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Long time ago there was concern about if the fluid approximation is
good enough

Bertotti (1966) pointed out on two needed corrections: the missing matter on the light path leads
to a decrease in luminosity; the gravitational focusing by galaxies lying near the line of sight

brightens the source.
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Light propagation in the geometric optics approximation.

OPTICAL SCALARS

The action of rotation ωab, shear σab and expansion θ, on the shape of an infini-
tesimal image projected on the screen during an infinitesimal increment of the
affine parameter, dλ.
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Light propagation in the geometric optics approximation.

OPTICAL-SCALARS EQUATIONS FOR LIGHT PROPAGATION IN ANY
GRAVITY FIELD
Expansion and shear, θ and σ

θ =
1

2
kα;α, σ = kα;βm

αmβ,

mα is a complex vector spanning the spacelike space orthogonal
to kα (kαmα = 0), satisfy the Sachs equations,

θ̇ + θ2 + σ2 = −1

2
Rαβk

αkβ,

σ̇ + 2θσ = −1

2
Cαβγδm

αkβmγkδ,

where λ and kµ is the (null) vector field tangent to the light ray.
In RW geometry, the Weyl tensor is zero and the shear vanishes.
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How to capture in a simple model the effects of local inhomogeneities

Zeldovich, 1964: light propagates through emptier rather than denser re-
gions

Dyer-Roeder approximation (1972): a different density in the light beam
from that in the background, modeled by ρ 7→ αρ, 0 ≤ α ≤ 1.

α → α(z) was proposed by E. V. Linder (Generalized DR) Astron. As-
trophys. 206, 190(1988).

Inhomogeneous models as exact solutions of EE, Swiss cheese, Lemaitre-
Tolman-Bondi (LTB)

Proposals on corrections due to lensing or voids Buchert (2000), Clarkson
and Ellis (2011), Bolejko (2013),

H → β(z)H , Mattsson (2010)
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SWISS CHEESE

Spherically symmetric static vacuum domains imbedded in FRW metrics

The effect on observational relations of introducing local inhomogeneities
into a given background spacetime is twofold:

It alters the redshifts

It changes the area distances
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The swiss cheese model

The swiss cheese model was proposed to take into account the effects of local inhomogeneities
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The Dyer-Roeder approach

The intergalactic space through which light rays propagate has a uniform matter
density α 〈ρ〉, 0 ≤ α ≤ 1.
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The matter in the Dyer-Roeder approach

Rαβk
αkβ = (8πGTαβ +

1

2
Rgαβ)kαkβ = 8πGTαβk

αkβ,

The energy-momentum tensor Tαβ:
incoherent matter p = 0 and ρm 7→ αρm + cosmological constant

Tαβ = αρmuαuβ + ρΛgαβ,

uα = δα0 , ρm, ρΛ.
Besides the coincidence assumption:

Ωm + ΩΛ = 1,

The fractional densities of the ρi matter component of the universe,

Ωi =
8πG

3H2
0c

2
ρi,

For our purpose of probing the late universe we do not include a radiation matter
component.
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The Zeldovich-Kantowski-Dyer-Roeder luminosity distance

A smoothness parameter that measures the clumpiness, as a function of
redshift,

α(z) = 1− ρcl

ρM

α = 1 is a filled beam (FLRW)
α < 1 defocusing efect
α = 0 is an empty beam, i.e. a totally clumped universe

Probed vs. cosmological observations without conclusive results by Kan-
towski (2001), Lima & Santos (2008), (2011),(2010).
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An equation for the diameter angular distance can be obtained. To connect the
angular diameter distance DA with the observable luminosity distance dL, we
use the Etherington relation, dL = DA(1 + z)2. The luminosity distance is
related to the comoving distance by

dL(z) = (1 + z)r(z),

r(z) calculated from the FRW model ds2 = 0
dL(z) is the quantity to be compared with observations of the magnitude µ of
SNe Ia

µ(z; a1, ..., an) = 5 log
dL(z; a1, ..., an)

Mpc
+ 25.

The clumpiness parameterα can be adjusted using cosmological data. Changing
to ν with

α =
1

6
(3 + ν)(2− ν),
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The ZKDR luminosity distance:

Incorporating also the initial conditions, the luminosity distance we used for the
observational tests is given by [Kantowski(2001)],

dL(z; Ωm, ν) =
c
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Ω
1/3
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[1 + Ωmz(3 + 3z + z2)]ν/6
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6
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6
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6
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.
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What to expect

Comparison between the luminosity distance in the ΛCDM model and the Dyer-
Roeder’s, expanding around z for z < 1,
For the ΛCDM

dFRW
L = H−1

0

{
z +

(
1

4
+

3

4
ΩΛ

)
z2 +

(
−1

8
− ΩΛ +

9

8
Ω2

Λ

)
z3 + O(z4)

}
,

whereas the luminosity distance in the clumped universe (FRW at large scales),

dDR
L = H−1

0

{
z +

1

4
z2 +

(
−1

8
+

1− α
4

)
z3 + O(z4)

}
,

Considering corrections up to O(z3) show that dDR
L (z) > dFRWL (z),
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The ZKDR luminosity distance for different αs
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The plot corresponds to the ZKDR luminosity distance as a function of the redshift z, from Eq.
(2); we have fixed Ωm = 0,266± 0,029 from WMAP-7 years and plot for different values of the
smoothness parameter: α = 0 (a completely clumped universe), α = 1 (homogeneous FRW) and

for a partially clumped universe, α = 0,5. Clearly the effect of diminishing the smoothness
parameter is to increase the luminosity distance.
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The luminosity distance Vs. supernovae Ia data

These are the confidence regions. At that time it was not possible to constrain the smoothness
parameter ν with 60 data of SNe Ia.
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The expected precision with 600 SNe Ia data

To constraint the smoothness parameter, Kantowski calculated about 600 SNe Ia data, now
available.
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From the data by Riess et al (2007), FRW is undistinguishable from ZKDR.
Plots from Santos, Cunha and Lima, PRD 77023519(2008).
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Observational Data

1. The Union2.1 supernovae data set.
N. Suzuki et al., Astrophys. J. 746, 85 (2012).

2. The Gamma-ray Bursts luminosity distances.
R. Tsutsui et al. [arXiv:1205.2954v2].

3. Direct measurement of the Hubble parameter, z in the same range than for
SNe Ia.

4. Baryon Acoustic Oscillations

5. CMB

6. Gravitational Lensing
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Most of the probes measure the distance traveled by light as a function of reds-
hift dL(z) and it is related to the Hubble parameter H(z) by

dL = H0(1 + z)

∫ z

0

dz′

H(z′)
,

H(z) contains information of the matter content of the model through ρi(z),

H2(z) =

(
ȧ

a

)2

=
∑
i

8πGρi
3H2

0c
2
,

ρ and a(t) are related through the energy conservation equation,

ρ̇ + 3

(
ȧ

a

)
(ρ + p) = 0,

Assuming an EoS we determine ρ(a) and we know that light redshifts with the
cosmological expansion like(

a(tobs)

a(temit)

)
=

(
λobs

λemit

)
= 1 + z,

For perfect fluid pi = wρi and this determines the expansion of that particular
component, for instance, e.m. radiation, w = 1/3⇒ ρrad ∝ a−4
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GRBs similar to SNe Ia but from large redshifts, the observable is dL

The models proposed to explain the two kinds of GRBs, Long and Short bursts.
The former is the result of the collapse of a giant star; the later are the collision
in a binary system. GRBs are observed at 0,4 < z < 8.
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Baryon Acoustic Oscillations

Baryon acoustic oscillations in the galaxy power spectrum have the characteris-
tic scale determined by the comoving sound horizon at the drag epoch (shortly
after photon decoupling).
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The characteristic scale

Baryon acoustic oscillations. The two point correlation of the data preferred
value is about 150 Mpc separated.
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Direct measurement of Hubble parameter

The age of the old passive galaxies may be inferred from their stellar population;
their redshift can be calculated with precision as well, then we obtain dz/dt that
leads to a measurement of H(z) = −(1/(1 + z))dz/dt
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the precision is of 5-12 % in 8 measurements (Moresco 2012)
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THE PROBES

The probes may be complementary and help to break the degeneracy in some
parameters
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Most of the probes measure the distance traveled by light as a function of
redshift dL(z) and it is related to the Hubble parameter H(z) by

dL = H0(1 + z)

∫ z

0

dz′

H(z′)
, H2(z) =

(
ȧ

a

)2

=
∑
i

8πGρi
3H2

0c
2
,

PROBE Redshift range data Data sample Collaboration
SNe Ia 0,1 < z < 1,7 dL 580-620 SCP
GRBs 0,4 < z < 8 dL 59,27 BATSE, BeppoSAX
OHD 0,15 < z < 1,4 dz/dt 20,12 GDDS
BAO z = 0,2, 0,35, 0,47 dA 46748 SDSS,2dFGRS
CMB z = 1090 R COBE,WMAP,Planck
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Data Analysis

The theoretical distance modulus is defined by

µth(z; a1, ..., an) = 5 log
dthL (z; a1, ..., an)

Mpc
+ 25.

dthL (z; a1, ..., an) = c(1 + z)

∫ z

0

dz′
1

H(z′; a1, ..., an)
.

Using the maximum likelihood technique we can find the fit for the correspon-
ding observed dobsL (zi).
The best-fit model parameters are determined by minimizing χ2

µ(g, κ)

χ2
µ(g, κ) =

∑
i

[µobs(zi)− µth(zi, g, κ)]
2

σ2
µobs

(zi)
.

In order to constrain the model parameters, we use a Markov Chain Monte Carlo
(MCMC) code to maximize the likelihood function

L(θi) ∝ e−χ
2(θi)/2,

θi is the set of model parameters.
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The confidence contours

Confidence regions coming from several probes allow to locate the best values for the parameters.
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RESULTS
Sample Ωm ν α χ2

red

SNe Ia 0,285+0,019
−0,018 0,555+0,417

−0,363 0,856+0,106
−0,176 0.975

GRBs 0,259+0,028
−0,028 1,152+0,332

−0,421 0,587+0,201
−0,202 0.877

Joint 0,284+0,021
−0,020 0,963+0,316

−0,387 0,685+0,164
−0,171 0.975

Summary of the best estimates of model parameters (Ωm, ν), obtained from
the ZKDR luminosity distance using a prior on Ωm. The respective samples are
SNe Ia reported by Union21 and GRBs reported in Ref. Yonetoku (2012). The
errors are at 68.3 % confidence level. Joint stands for the joint analysis SNe Ia
+ GRBs. The corresponding confidence regions are shown in the next Figure.
ΩΛ remains over the 70 %
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The confidence contours
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Confidence regions in the (Ωm, ν) plane for the model with a ZKDR luminosity distance using a
prior on Ωm. The contours correspond to 1σ-2σ confidence regions using: LGRBs, largest region
on the back; SNe Ia, smallest region on the front; the combination of the two observational data,

the region between the LGRBs region and SNe Ia region.
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Results suggest α(z)

Sample Ωm α redshift range χ2
red

SNe Ia 0,285+0,019
−0,018 0,856+0,106

−0,176 0,015 ≤ z ≤ 1,414 0.975
GRBs 0,259+0,028

−0,028 0,587+0,201
−0,202 1,547 ≤ z ≤ 3,57 0.877

Hubble 0,268+0,023
−0,023 0,895+0,076

−0,122 0,09 ≤ z ≤ 1,75 1.025
Joint 0,275+0,019

−0,018 0,821+0,110
−0,129 0,015 ≤ z ≤ 3,57 0.974

Summary of the best estimates of model parameters and the corresponding reds-
hift range using in all the cases a prior on Ωm from WMAP7. The smoothness
parameter α shows a dependence on the redshift range. Joint: SNe Ia + Hubble
+ GRB
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Bulk viscosity driven the accelerated expansion

Tαβ = ρuαuβ + (gαβ + uαuβ)P ∗, P ∗ = P − ς∇νuν,

Incoherent matter P = 0 and ς is the bulk viscosity coefficient;
The Hubble parameter

H(z)2 = H2
0

[
ς

3
+

(
Ω

1/2
m0 −

ς

3

)
(1 + z)3/2

]2

, (2)

we do not assume Λ i.e. Ωm = 1

H(z) =
H0

3

[
ς + (3− ς) (1 + z)3/2

]
, (3)

Using SNe Ia, GRBs and BAO, the resulting adjustment of ς = 1,9389, H0 =
69,56, zt = 1,37, q0 = −0,4695, with a χ2 = 0,9572,
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Bulk viscous fluid

68.3363!

95.4498!

99.7301!

99.9937!
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The joint confidence regions in the (H0, ς) plane for
the bulk viscosity model with 0 < ς < 3. The contours correspond to 1− σ − 4− σ confidence

regions using Union2 SNe Ia + GRBs. GRBs were calibrated using the MB Calibration. The best
estimated values and confidence intervals using the Union2 SNe Ia data set are ς = 1,98350,0668

and H0 = 69,71300,3572 and those obtained using the Union2 SNe Ia + GRBs data set are
ς = 1,93890,0647 and H0 = 69,56160,3523, which are pointed with a dot
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The cosmic fluid as a nonlinear e.m. plasma?

Coupled gravitational and NLED equations are derived from the action

S =

∫
d4x
√
−g{ R

16π
− LNLED},

R denotes the scalar curvature, g := det|gµν| and LNLED is the electromagnetic
part, that depends in nonlinear way on the invariants of the electromagnetic
field, L = L(F,G), F = 2(B2 − E2), G = 4E ·B, while LMax = F
Some appealing features are:
-Breakdown of conformal invariance,

4πTµν = −L,FF α
µ Fαν + (GL,G − L)gµν,

R = 8π(L− FL,F −GL,G) = −8πT.
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A magnetic plasma

4πTµν = −L,FF α
µ Fαν + (GL,G − L)gµν,

ρ = −L + GL,G − 4E2L,F > 0,

ρ = L−GL,G +
4

3
(E2 − 2B2)L,F ,

We try two lagrangians,
1) L = −F

4
+ γF α, α = −1/4, ΩB = 0,683 no need of dark energy

H(z)2

H2
0

= Ωm(1 + z)3 + ΩB(1 + z)4α,

Ωm = 0,361, h = 0,76
2) Born-Infeld type
L = β2

(
1−

√
1 + F

2β2
− G2

16β4

)
ρBI = β2(

√
1− a−4 − 1)

probes: SNe Ia, OHD, GRBs, the adjustment depended on z, we inferred a
w(z), 0,04 < ΩBI < 0,3
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Nonlinear e.m. fluid
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1σ and 2σ contours in the Ωm − h parameter space coming from the
combination of all observational data. These confidence regions have been

obtained considering a prior on Ωm from the Planck results. The blue contours
correspond to the nonlinear magnetic universe with α = −1; the green

contours correspond to the scenario with α = −1/4; the contours in solid line
corresponds to the scenario with α = −1/8.
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Nonlinear e.m. fluid
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1σ and 2σ contours in the Ωm − h parameter space coming from the
combination of all observational data. These confidence regions have been

obtained considering a prior on Ωm from the Planck results. The blue contours
correspond to the nonlinear magnetic universe with α = −1; the green

contours correspond to the scenario with α = −1/4; the contours in solid line
corresponds to the scenario with α = −1/8. In this case the contours are

obtained without assuming any prior on Ωm.
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Conclusions

The luminosity distance describing the effect of local inhomogeneities in
the propagation of light proposed by Zeldovich-Kantowski-Dyer-Roeder
(ZKDR) is tested with two probes for two distinct ranges of redshifts: su-
pernovae Ia (SNe Ia) in 0,015 ≤ z ≤ 1,414 and gamma-ray bursts (GRBs)
in 1,547 ≤ z ≤ 3,57.
Using a MCMC code in a chi-square best fit allows us to constrain the matter
density Ωm and the smoothness parameter α

The value of the smoothness parameter α indicates a clumped universe.
However, this fact does not have an impact on the amount of dark energy
(cosmological constant) needed to fit observations.

Therefore FROM THIS MODEL we cannot establish a connection between
the accelerated expansion and the clumpiness of the cosmic fluid.

Other alternative-Λ models have been tested vs.cosmological data:
A magnetic universe provides a good adjustment without dark energy.
Bulk viscosity also reproduces well the observed data.
They are not good with CMB, but supports the idea that maybe what is
lacking is a good model for the cosmic fluid.
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THE DESCRIPTION OF INHOMOGENEITIES IS INCOMPLETE

There is an inconsistency in the consideration of H(z) as in homogeneous
FRW:
i.e. the effects of inhomogeneities are not considered in the expansion rate,
It is considered a flat space (zero curvature), including just the dark matter
(dust) and energy components, with a Hubble parameter(

H(z)

H0

)2

= Ωm(1 + z)3 + ΩΛ.

whereas the luminosity distance depends on the expansion rate (null geode-
sics from FRW, k = 0),

dL(z) = (1 + z)

∫ z

0

dz̃

H(z̃)
,

The relationship between the affine parameter and the redshift is the same
than in FRW

dz

dλ
= (1 + z)2H(z)

H0

,


