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Introduction

Work in collaboration with Alfredo Herrera-Aguilar, Konstantinos
Kanakoglou, Ulises Nucamendi and Israel Quiros ( Gen.Rel.Grav.
46 (2014) 1631)

Brane world scenarios have probe succes in adressing some
problems in high energy problems.

The model considered describes a thick brane world model arising
in a 5D theory of gravity coupled to a self-interacting scalar field
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Setup and solution

We consider the 5D Riemannian action

SW5 =

∫
d5x
√
|G|
[

1

4
R− 1

2
(∇φ)2 − V (φ)

]
(1)

were φ is a bulk scalar field and V (φ) is a self–interacting potential
and M3

∗ = 1/8 for the time being.

We shall study solutions which preserve 4D Poincaré invariance
with the metric

ds25 = e2A(y)ηnmdx
ndxm + dy2, (2)

where e2A(y) is the warp factor of the metric and depends just on
the fifth dimension y; m,n = 0, 1, 2, 3.
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Setup and solution

Solution
A(y) = −b ln [2 cosh(cy)] (3)

φ(y) =
√

6b arctan
[
tanh

(cy
2

)]
, (4)

where the domain of the extra dimension is infinite −∞ < y <∞
The corresponding self–interacting potential is

V (φ) =
3c2b

8

[
(1− 4b) + (1 + 4b) cos

(
2

√
2

3b
φ

)]
. (5)

This solution can be interpreted as a thick AdS domain wall
located at y0 = 0 with two free parameters: one for the width of
the wall, given by c, and another for the AdS curvature, which is
characterized by bc.
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Fluctuations of the metric and gravity localization

We study the metric fluctuations hmn given by

ds25 = e2A(y) [ηmn + hmn(x, y)] dxmdxn + dy2. (6)

We perform the coordinate transformation dz = e−Ady in order to
get a conformally flat metric and obtain the equation for the ttm
of the metric fluctuations hTmn(

∂2z + 3A′∂z + �
)
hTmn = 0. (7)

We use the ansatz hTmn = eipxe−3A/2Ψmn(z) in order to recast as
usual eq. (7) into a Schrödinger’s equation form

[∂2z − VQM (z) +m2]Ψ = 0, (8)

Nandinii Barbosa-Cendejas (ICF-UNAM) II Taller GFAEC August 2014 6 / 23



Fluctuations of the metric and gravity localization

The analog quantum mechanical potential, which is completely
defined by the curvature of the manifold, reads

VQM (z) =
3

2
∂2zA+

9

4
(∂zA)2. (9)

The warp factor determines the dynamics of the KK gravitational
fluctuations

The spectrum of eigenvalues m2 parameterizes the spectrum of
graviton masses that a 4D observer standing at z = 0 sees

The analysis of the physical properties of the graviton spectrum
predicted by Eq. (8), allow us to establish whether localization of
4D gravity is posible
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Localization of gravity for the solution

In the particular case when b = 1 we can express the variable y in
terms of z by the following relation

2 cosh(c(y − y0)) =
√

4 + c2z2. (10)

The warp factor adopts the form

A(z) = − ln
√

4 + c2z2; (11)

The quantum mechanical potential reads

VQM (z) =
3c2

4

5c2z2 − 8

(4 + c2z2)2
(12)
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Localization of gravity for the solution

The quantum mechanical potential has the form of a volcano
potential with finite bottom which asymptotically vanishes.

Indicating that there exists a single normalizable bound state with
no mass gap in the graviton spectrum of KK fluctuations for this
particular case.

And a infine tower of massive KK modes.

For this special solution to our model the 5D Ricci scalar is
regular everywhere as can be seen from its expression:

R = −8e−2A
(
Azz +

3

2
A2
z

)
= 4a2

8− 5a2z2

4 + a2z2
, (13)

leading to a 5D manifold which is completely free of naked
singularities.
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Localization of gravity for the solution

In order to analytically study the spectrum of massive KK modes
for this solution of the model we exactly solve the following
Schrödinger equation.

[∂2z −
3c2

4

5c2z2 − 8

(4 + c2z2)2
+m2]Ψ = 0. (14)

The way to obtain the solution for this equation with arbitrary m
is the following: we go to the complex realm and solve.

Then come back to the original real variables and analyze in closed
form the corrections to Newton’s law an solve the hierarchy
problem.
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Confluent Heun equation in the ince limit

The confluent Heun equation is a generalization of the
Hypergeometric equation.

Some particular solutions have been found in the literature.

We will look at the Ince’s limit of the confluent Heun equation, or
the generalized spheroidal wave equation given by

w(w − w0)
d2U

dw2
+ (B1 +B2w)

dU

dw
+ [B3 + q(w − w0)]U = 0 (15)

were q 6= 0, if q = 0 the Heun equation can be transformed in to a
hypergeometric equation.
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Exact solutions for the localization of gravity in the
solution

By applying the following transformations for the parameter
a = iα, the fifth coordinate w = α2z2/4, where the domain of the
new coordinate is 0 ≤ w <∞, and the wave function

Ψ = (1− w)−3/4U(w), (16)

We recast the Schrödinger equation (8) into the Ince’s limit of the
confluent Heun equation, or of the generalized spheroidal wave
equation with w0 = 1, B1 = −1/2, B2 = −1, B3 = 0 and
q = m2/α2;
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Exact solutions for the localization of gravity in B
solution

The equation adopts the form

w(w − 1)
d2U

dw2
−
(

1

2
+ w

)
dU

dw
+
m2

α2
(w − 1)U = 0, (17)

where w = 0 and w = w0 = 1 are regular singularities and infinity
is an irregular one.

We require that solutions (with arbitrary mass m > 0) behave at
infinity as the so-called subnormal Thomé solutions

lim
w→∞

U(w) ∼ e±2i
√
qww(1/4)−(B2/2) = e

±2i m|α|
√
w
w3/4, (18)

This particular behaviour of the solutions corresponds to the
description of plane waves at spatial infinity in the extra
dimension by the wave function (16).
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Explicit solutions

In our case, the pair of solutions adopts the following form:

U0 =

∞∑
n=−∞

bn F

(
−n− ν − 3

2
, n+ ν − 1

2
;−3

2
; 1− w

)
,

U∞ = w
∞∑

n=−∞
bn K2n+2ν+1

(
±2i

m

|α|
√
w

)
, (19)

The coefficients bn obey three–term recurrence relations

αnbn+1 + βnbn + γnbn−1 = 0, (20)
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Explicit solutions

The coefficients can be calculated with the aid of the following
quantities

αn=
m2(n+ν+ 5

2)(n+ν+2)

α2(n+ν+1)(n+ν+ 3
2)
,

βn=−2m
2

α2 +4
(
n+ν+ 3

2

) (
n+ν− 1

2

)
− 3m2

α2(n+ν)(n+ν+1)
,

γn =
m2(n+ν− 3

2)(n+ν−1)
α2(n+ν)(n+ν− 1

2)
.
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Explicit solution

Computing an explicit solution like (19) involves the calculation of
the coefficients bn, and possess a dominant and a minimal solution.

We produce two minimal solutions for the recurrence relations.

These two solutions are pasted in the origin and normalized
accordingly.

The minimal solution thus constructed guarantees the convergence
of the two–sided infinite series and must be chosen as a physical
solution to the Ince’s limit of the confluent Heun equation of our
problem.
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Explicit solution

The zero mode can easily be computed by looking at the solution
in the massless case m = 0 (q = 0).

The parameters αn and γn vanish and the remaining parameters
βn are all non–zero, a fact which implies that all the coefficients
bn = 0.

The only bound state of the system is given by the following
eigenfunction

Ψ0 =
k0

(4 + c2z2)3/4
, k0 = const. (21)

This mode corresponds to the normalizable 4D graviton, free of
tachyonic instabilities, as expected from the solution of the
massless Schrödinger equation Ψ0 ∼ e3A/2.
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Explicit solution

The pair of solutions of the Schrödinger equation in the language
of the parameter a and the original coordinate z, transforms into

Ψ0 =

(
1 +

a2z2

4

)−3/4
× (22)

∞∑
n=−∞

bn F

(
−n− ν − 3

2
, n+ ν − 1

2
;−3

2
; 1 +

a2z2

4

)
,

Ψ∞ = −a
2z2

4

(
1 +

a2z2

4

)−3/4 ∞∑
n=−∞

bn K2n+2ν+1 (±imz) (23)

with the same coefficients αn, βn and γn.

The asymptotic behaviour of these solutions, as physically
expected, corresponds to plane waves:

lim
z→∞

Ψ(z) ∼ e±imzz3/2 (4 + a2z2)−3/4 ∼ e±imz. (24)
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KK corrections to Newton’s law

We consider the thin brane limit β →∞, where we can locate two
test bodies at the center of the brane in the transverse direction.

The corrections to Newton’s law in 4D flat spacetime coming from
the fifth dimension

U(r) ∼ M1M2

r

(
G4 +M−3∗

∑
i

e−mir|Ψi(z0)|2 + (25)

+M−3∗

∫ ∞
m0

dme−mr|Ψµ(m)(z0)|2
)

=
M1M2

r

(
G4 + ∆G4

)
, (26)

where G4 is the 4D gravitational coupling, Ψi represents the wave
functions of the discrete excited states with mass mi, and Ψµ(m)

denotes the continuous eigenfunctions.
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KKcorrections to Newton’s law

In the case of the presented solution there are no discrete massive
modes ence no contribution from excited discrete states.

We evaluate the massive wave functions (solutions to the Heun
equations)at z0 = 0, and compute the corresponding series.

We get the following corrections to Newton’s law in this particular
case:

∆G4 ∼ M−3∗
1

2πa2r2

(
1 +O

(
1

(ar)2

))
, (27)

a result that coincides with the RS correction up to a factor of
1/2π.
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Mass Hierarchy Problem

To adress the mass hierarchy problem we add a thin positive
tension probe brane some distance away from the location of the
thick (Planck) brane

The 4D gravity is bound on the planck brane and the SM particles
are trapped in the (thin, positive tension) probe brane.

We look at the curvature termfrom wich one can derive the scale
of the gravitational interactions

Seff ⊃ 2M3
∗

∫
d4x

∫ ∞
−∞

dz
√
|g|e3AR, (28)

where we performed the coordinate transformation dy = eAdz, and
R is the 4D Ricci scalar.
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Mass Hierarchy Problem

We stablish the connection between the planck scales in 4D and
5D.

M2
pl = 2M3

∗

∫ ∞
−∞

dze3A =
M3
∗
β
, (29)

Which is finite and for the presented solution we have β = c/2.

If we take M∗ ∼ β ∼Mpl, then the zero mode Ψ0 is coupled
correctly to generate 4D (Newtonian) gravity.

Also the thickness of the brane is inversely proportional to the
Planck mass ∆ ∼ 1/c ≈M−1pl it is extremely small to be resolved
by 4D observers located at the TeV probe brane.
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Conclusions

We consider a particular scalar thick brane generalizations of the
RS model in which 4D gravity is localized.

For the linear metric perturbations we obtain analytic expressions
for the lowest energy eigenfunction which represents a single
bound state that can be interpreted as a stable 4D graviton free of
tachyonic modes.

The continuum spectrum of massive modes of KK excitations are
explicitly given in terms of of two–sided infinite series of
hypergeometric functions and modified Bessel functions, allowing
for analytical computations of corrections to Newton’s law.

The presented solution represents an original application of the
Ince’s limit of the confluent Heun equation within the framework
of thick braneworld models, generated by gravity coupled to a
bulk scalar field.
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