Reprinted from ANNALS OF PHYSICS Vol. 172, No. 1, November 1986
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Symmetry in Lie Optics
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Optical systems produce nonlinear canonical transformations in optical phase space. Free
propagation in a homogeneous medium has Euclidean symmetry and dynamical algebras
under the Poisson-Lie bracket. Refracting interfaces between homogeneous media exhibit
invariants; in particular, a spherical surface possesses an so(3) symmetry algebra which allows
the recursive computation of its aberration coefficients to arbitrarily high order. We present
explicit results for aberration order nine.  © 1986 Academic Press, Inc.

1. INTRODUCTION

The development of Lie methods applied to optics is very recent, and was
motivated by problems in accelerator design [1]. Through studying nonlinear
transformations of optical phase space which model optical systems, Lie theory can
provide insight into the symmetry and dynamics of such systems as well. These
names are taken from the familiar applications of group theory to classical and
quantum mechanical systems; their meaning has be rediscovered in optics, though.

The Hamiltonian treatment of optics, surveyed in Section 2, historically preceded
its applications in mechanics [2]; so should have the wave treatment of classical
systems, yet the quantization of mechanics became a necessity apart from
“wavization” of geometrical optics. This section presents the optics of homogeneous
media in terms of Euclidean symmetry considerations. It also recalls the fac-
torization theorem of Dragt and Finn [3,4] which factors the optical transfor-
mation into a Gaussian (paraxial, linear) part, and a succession of aberrations of
increasing order.

Optical systems, moreover, have elements which do not have a precise counter-
part in mechanics: refracting surfaces. These are “instantaneous” finite canonical
transformations of phase space. These transformations are nonlinear (and globally
non-bijective); under rather broad conditions, however, they are one-to-one in a
finite neighborhood of the optical axis of the system. Section 3 introduces the treat-
ment of these surface transformations, their newly discovered factorization [5] and
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finds invariants: the Petzval invariant and two so-defined Snell invariants. These
close into an so(3) algebra if the surface is spherical. In Section 4 we apply such
symmetry considerations to find the well-known aplanatic points of the sphere.

The essential nonlinearity of the general refracting surface transformation
satisfies, nevertheless, certain general conditions at the optical axis, and these imply
certain “selection rules” for the aberration coefficients which have been noticed
before [ 1, 6-8]. Section 5 uses the Snell invariants for the purpose of calculating the
Gaussian parameters and third-order Seidel aberration coefficients of a spherical
surface transformation. Section 6 extends this algorithmically to arbitrarily high
aberration order, making the “selection rule” explicit.

In Section 7 we present a symplectic classification of aberrations [6], closely
related to the Raccah-algebraic treatment of multipole expansions. In this basis we
give, in a table, the explicit aberration coefficients of a spherical surface to
aberration order nine. (These particularize results obtained by Navarro-Saad [7]
for axis-symmetric tenth-degree surfaces; similar results have also been reported by
Forest [8] to aberration order seven.) The last section offers some concluding
remarks in connection with current developments.

2. OpTICAL PHASE SPACE, FREE PROPAGATION, AND LIE SERIES

The Hamiltonian formulation of geometrical optics [1] describes light rays as
points (p,q) in an optical phase space, evolving along the optical axis z of the
system (which takes the role of time in the classical mechanics of point particles).
See Fig. 1. At every z = constant plane, the configuration subspace has coordinates
q, and is 2-dimensional in actual optical systems. Fermat’s principle leads to an
optical Lagrangian [1, 2, 9] from which the canonical momentum p is shown to be
a vector in the z = constant plane, along the projection of the ray on the plane, and
of magnitude p = n sin 0, where n is the refraction index of the medium at (q, z), and
0 is the angle between the ray and the z axis.
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Fic. 1. The Hamiltonian treatment of geometric optics maps light rays (left) onto points in
(4-dimensional) phase space (right).
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The optical Hamiltonian is shown to be [1]
h= —ncos 0= —./n*— p?

pt+

|
~ —n+—p*+ Pl . (2.1)

2n 8n? 16n°
The Hamiltonians of classical pointparticle systems contain only one term of order
two in p; this is the Gaussian, or paraxial, approximation to optics; this allows only
linear transformations of phase space under free propagation in homogeneous
media (n = constant). Terms of order higher than two in the Hamiltonian generate
nonlinear transformations in optical phase space, which are defined as aberrations.
Free propagation itself, therefore, aberrates.

Lie optics uses the structure of Hamiltonian optics associating [1, 10, 11] Lie
operators f to every continuously differentiable observable f(p, q) of phase space,
through defining

2 2 (0f 8 afdN\_. , .,
f._ Z <5qf5pi ﬁp,.aq,)_' lf’ s> (2.2)

i=1

where {-, -} is the Poisson bracket. For the operators f we have hence a Lie struc-
ture of commutators, since [12] [/ s1=U1. g})A. (Note: The Lie operator
associated to f'is also denoted by f,, by Katz [10], :f: by Dragt [1], {f,-} or
[/,-] by Steinberg [11]. When f is a longish explicit expression, Dragt’s notation,
:f:, is advantageous. In such cases we use (f) .)

Free propagation through a distance z in a homogeneous medium is thus
described with the operator generated by h,

H. :=exp(—zh), (2.3)
whose action is given by the Lie exponential series, or Lie transformation [3, 4, 11]:

H.fb @)= Y () /(b @)= f(H.p, H.q). (4

n=0

In particular, on the phase-space coordinates, this series may be summed to

(P P'(p.q:2)) P

H:'<q>H<q’(p,q;z)> <q+zp/\/n2—p2>' 2

Ray direction obviously does not change in free propagation, and the last summand

is simply z tan 0 along the direction of p, a fact which is clear from simple geometry.

For small 0, tan f~sin § and H, is approximated by a lower-triangular block-

matrix with z/n 1 and units on the diagonal; this is the Gaussian approximation to
free propagation.

When the medium is homogeneous, 4 evidently commutes with the generators of
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translations in the plane, p; and p,. It is also commutes with the generator of
rotations around the optical axis

~ ~

my ==(qxp) =(q,p>—q2p1)
=Pp20p; — P10p> + 4209, —q,0q,. (2.6)

Correspondingly, the classical observable

my(p,q)=qxp=q’ xp' =m;(p’, q'), (2.7)

is conserved under z-evolution generated by A. It is called [9] the skewness, or
Petzval, invariant.

Conversely, [7;, i]1=0 implies that the Hamiltonian h(p, q) may only depend
on quantities invariant under joint rotations of the p and q planes, namely p°, p-q,
¢°, and q xp. Then [ p,, /] =0 reduces & to depend on p> only.

In a homogeneous, isotropic medium, the choice of the z axis is clearly arbitrary.
For simplicity, we may draw the situation in one dimension, as depicted in Fig. 2:
the same ray has coordinates (6, ¢) with respect to the ¢ axis, and (0%, ¢*) with
respect to the g* axis, rotated by a. For the angles, 0% = 0 + «, while from the law of
sines, g/cos 0% = g*/cos 6. As a result, the transformation of optical phase space due
to a rotation by « is, in one dimension,

popR=pcosa+./n*— p’sina (2.8a)

g+ q"=(cos a —sinap//n*— p*) 'q. (2.8b)
The full transformation in two dimensions requires dot and cross products between
vectors p, q, a, but the generator of (2.8) is easily brought to 2-vector form as

2 2

m:=q./n"—p-. (2.9)

O/ ---Pz

FiG. 2. A fixed light ray as described in two coordinate systems rotated with respect to each other
around O.
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One may verify that the two operator generators in (2.9) and the Petzval
invariant (2.6) satisfy the commutation relations of the rotation algebra [137] so(3):

[y, my] =y, [y, ms] =y, [y, my ] =m,. (2.10)

Under these, the following commuting operators transform as a 3-vector:

P B2, B3 =(/n*—p*) = —h. (2.11)

The Hamiltonian, thus, is identified with the generator of translations in the z direc-
tion, and its form is therefore fixed. The so(3) invariant magnitude of the trans-
lation 3-vector is n.

The symmetry algebra of optical free propagation is therefore the 2-dimensional
Euclidean algebra iso(2), generated by {p,, p,;m;}. The dynamical algebra, of

.which A= —p, is an element, is the 3-dimensional Euclidean algebra iso(3)
generated by {p,, p, py = — h; 1y, i, ity ).

As we exemplified above for the free propagation operator H. =exp( —zh), any
continuously differentiable f(p, q) may be used to construct a Lie transformation
F, =exp(tf). These operators are [11] linear: F,(c, g, +¢,8,)=c,F, g, +¢,F, g,
they preserve function products and Poisson brackets: F,(g, g,)=(F,g,)(F, g>),
F/{g., g}=1{F,g F,g,}, and act on function arguments as (F, g)(x)= g(F,x). If
we describe two optical elements or systems, 4 and B, by Lie series operators S ,
and S, whose action on x=(p,q) 1s S, x=x,(x) and Szx = x,(x), with known
functions x, and x, of x, then their composition, ie., the compound system AB
obtained by acting first with 4 and second with B, is

Sapx:=8,8sx=S,x5(x)
=xp(S 4x) =x5(x 4(x)) =1 x 45(x). (2.12)

The action of Lie series operators S on Poisson brackets insures that Sx = x'(x)
is a symplectic map [2], or canonical transformation [3], ie, {gq/ ¢;}=0,
{pi,p;}=0, {q/,p/}=0,. A converse result has been given as a factorization
theorem by Dragt and Finn [3, Theorem 2]. This may be parapharased in the
following form. Let x'(x)= Sx be a symplectic map having a power series expan-
sion about the origin. Then there exist unique homogeneous polynomials s, of
degrees n=1, 2,... such that x'(x)=(---5,5;5,5,)x, where S, =exps§,. When S
sends the origin into itself, i.e., when there are no constant terms in the power series
expansion, then s, =0.

We should note that S,x is linear in the components of x (the Gaussian, or
linear, approximation), while S,x is x plus terms of order n—1,2n—1,... in the
components of x. The symplectic map S:=---§55,S; may be called the
aberration part of S=S“S,. (The original presentation of this result [3] was in the
form §=85,5% S“=85,S,---. The advantage here of acting first with the
aberration part on the “object” phase space, and second with the Gaussian part S,
is that the coefficients in S, S,,.., will give the magnitude and sign of the
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aberration of the object, before it undergoes its major size transformation under the
main, Gaussian part of the system.)

The factorization theorem of Dragt and Finn also allows us to approximate a
system S by considering up-to-Nth order aberrations. We replace S¢ by S% :=
Snvi1Sy S48, and thus S by Sy :=54S,. The transformation x+— S, x=: x/y(x)
is still a symplectic map. Conversely, if we know the Taylor series of the map x'(x)
up to Nth order terms, X’y(x), we may in principle reconstitute the symplectic map
S up to Nth aberration order S,. Of course, x> Xy(x) is not, by itself (for N> 1),
a symplectic map. Poisson brackets between the p’y and @)y components of X'y(x)
will in general yield Poisson brackets with O or 1, plus terms of order N+ 1 and
higher. They may be called canonical to order N.

3. REFRACTING SURFACES

A refracting surface is here a continuously differentiable interface z={(q)
between two homogeneous media of refraction indices n and »’. The geometric
process of light refraction is described, as is well known, by Snell’s law

nsin g =n'sin ¢’ (3.1)

where ¢ and ¢’ are the angles between the incident and refracted rays, and the sur-
face normal at the point of incidence. The three directions lie in a plane.

The description of refraction at a sharp interface { might seem to be troublesome
in Lie optics, since the process involves a discontinuity in the Hamiltonian. Indeed,
even the symplecticity of the phase-space transformation does not seem to have
been proven directly until recently. We may denote this transformation by
S(n,n’; (). Tt appears, moveover, that in neighborhoods excluding caustics, the
refracting-surface map has a convergent power series expansion; this will allow us
to apply the Dragt—Finn factorization theorem.

In what follows, we shall exploit the following theorem due to Navarro-Saad and
Wolf [5], which is based on the rather simple geometric construction of Fig. 3, and
which we shall partially sketch below. It states that the refracting surface transfor-
mation S may be factorized as

S(n,n; {)=R(n; {) R(n'; (), (3.2)

where the “root” transformation R(n, () acts as

p(p, q) :==R(n, O)p=p+/n"— p(VO)(@), (3.3a)
a(p, q) :=R(n; )q=q+(q) p//n° — p°. (3.3b)

and is locally canonical at all its points of continuity. Note that the root transfor-
mation is defined implicitly by (3.3), since q appears on both sides of (3.3b).
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FiG. 3. Geometric meaning of the factorization for refracting surfaces. The action of the surface on
the refracted ray is described as a finite transformation at the reference plane. The refracted ray is con-
tinued back to this plane; the point of intersection, g, is shown.

The meaning of the surface factorization (3.2) is rather intuitive: there is a
reference surface z =0, through which the ray (p, q) propagates to {; as it refracts,
its regression hack to the reference surface z=0 is the ray (p’, q'). The effect of { is
thus described by (p,q)— (p’,q’) at z=0, quite independently of whether the
actual refracting surface z={(q) is “near” to z=0 or not. Its effect is that of a sud-
den transformation at the chosen reference point along the optical axis.

Regarding the composition through (2.12), if R(n; {)x = X,,(x) and its inverse is
denoted by R(n;{) 'x=2%,(x) (so R(s,n) ' X,,(x)=x), then S(n,n’;{)x=
R(m ) R(n'5 1)~ x = R(15 0) Ky (%) =% (R O)X) = K (B (x)) = X' (5.1, 1),

This factorization theorem 1is also valid when the two media are not
homogeneous, but n=n(q, z), n’ =n'(q, z). In that case, however, the root transfor-
mation takes a form which replaces (3.3) by the appropriate propagation in the
inhomogeneous media [15].

This construction provides us with a very obvious way of building optical
invariants: q itself is a conserved (vector) quantity for the surface transformation S
in the sense that, due to the factorization (3.2),

q(p,q;n)=q(p, q’;n")=Sq(p, q; n'). (3.4)

Next, the incidence angle in Snell’s law (3.1) is ¢ =60 + ¢ and the refracted angle is
@' =0+ with tan y = (V{)(g). In one dimension, we thus define

k:=nsin(0+y)=[p+/n*— p*(V{)(g)] cos ¥ =: p cos . (3.5)
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This leads to (3.3a), and establishes also p (in two dimensions) as a conserved (vec-
tor) quantity

p(p,q;n)=p(p’,q;n")=Sp(p,q;:n'). (3.6)

Indeed, any function f of p and q only, will be conserved in the sense that, when
(3.4) and (3.6) are replaced,

g(p.q:n) :=1(p.q)=g(p’. q';n')=Sg(p, q; n'). (3.7)

This general statement may be operationally vacuous unless we be able to write
concrete functions g which are explicit in the arguments, and not merely defined
implicitly. This will be done for the spherical surface in the next section. Here we
want to exploit the general construction in implicit form using the second result of
the above theorem: the canonicity of (3.3).

The two sides of Snell’s equation (3.1) are the statement of invariance of (3.5),
namely (in two dimensions) of

k:=p /1402 2:=[(VO@]% (3.8)

which we call Snell's invariant, since it has the property (3.7). We now calculate the
Poisson bracket between the two components of k, k,, and k,, with respect to the
canonically conjugate variables (p, q). This is

(ki ky} =5(1+0%) 2(px V)72 (39)

(where V indicates that derivatives are taken with respect to g).

If the surface { is axially symmetric, so that {(q) is a function of 4 :=[q| only,
then (V()(@)=q('/g and V{*>=2(q/q) {'(", with ('(§)=d((g)/dg. Then we may
write (3.9) as

d —1
ki,kr,}=| —=—|—=5 ] |aXD- 3.10
{ 1> _} [d(q2)<1+czz>}qxp ( )
For axially symmetric surfaces too, from (3.3), the ray skewness
My =qXp=qxp=q xp'=Sm; (3.11)

is an invariant under the surface transformation which, in contradistinction to the
general invariant (3.7), does not depend on the two refraction indices n, n'. The
Petzval invariant (3.11) intertwines the two Snell invariants, since

{m3’k1}=k27 {iskZ}:_kla (312)

but does not in general close into a finite-dimensional algebra with them, unless the
bracketed expression in (3.10) be a constant.
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4. SPHERICAL SURFACES

Consider the surface of a sphere of radius r centered at z=c¢,

z={q)=c—/r*—¢> (4.1)

defined for ¢*><r” In that case, in (3.9), V{(§)=q//r*— ¢ and (> =§*/(r* — §°);
the quantity in brackets in (3.10) is 1/r*, and so the three quantities {rk,, rk,, m;}
of last section close into an so(3) algebra under the Poisson bracket. So do the
associated Lie operators under commutation.

In this case, the Snell invariants (3.8) become p /r> — ¢/r and may thus be writ-
ten explicitly in terms of the unbarred ray coordinates, using (3.3a) for (4.1), a

rk=pc+q./n*—p*=pc+q /n?—p? (4.2)

The Lie operators associated to (4.2) are the generators of rotations around the
center of the sphere at z= ¢, as may be seen comparing with (2.9),

exp( — ch) texp(ch) = rk, (4.3)

i.e., rk is obtained moving the center of rotation to the position z =c¢. The equality
in (4.2) means, quite obviously, that the incident and refracted rays move in unison
as they are rotated around the center of the refracting sphere. The so(3) Casimir
operator is

m’ +m3=(pc+qy/n” — p°) + (qxp)’=n*(*+4¢°)—(q-p—c/n’—p?)? (44)

Now, a pencil of meridional rays (i.e., rays which lie in a plane with the optical
axis, so p//q and m; =0) converging towards an intersection point at z;, have their

position and direction bound by the relation ¢= —z;,tan 6 or, vectorially,
q./n*>— p?= —z,p. Their Snell invariant is thus
rk=(c—z,)p. (4.5)

Those rays which converge towards the center z; = ¢ of the refracting spherical sur-
face { have zero Snell invariants: k =0, before and after refraction.

This property of all the rays in a pencil through a point, to have their Snell
invariant proportional to their momentum times the distance to the reference plane,
Eq. (4.5), may be used to furnish a simple derivation of the location of the aplanatic
points of a refracting sphere. Pairs of aplanatic points [16], —see Fig. 4—are such
that rays converging to one of them will, upon refraction, converge to the other. A
refracting sphere has one such pair. (This property is used to build the objective
lens of oil-immersion microscopes.) Placing the reference plane z =0 at the center of
the sphere, the two pencils must satisfy rk = —z,p= —z/p’ or z;,nsin 0 =z/n' sin 0'.
If n<n' as in the figure, the maximum of rk is achieved at 6/, = n/2, corresponding
to tangency at 7, so z;nsin@,, =z/n’; but sinf,, =r/z;,, and so it follows that
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FiG. 4. The geometry of the aplanatic points of a sphere. A pencil of rays aimed to intersect at z,,
refracts and intersects at z|.

z;j=rn/n’. Since 0, is also the angle to the normal of refracted tangent rays,
sin 0,, =n/n’ and it also follows that z, = rn’/n. Replacement into z,p=z/p’ verifies
the Abbe sine condition [17] sin 6/sin 8’ =n/n’ for perfect imaging.

5. THE SPHERICAL SURFACE, ITS GAUSSIAN PART, AND
THIRD-ORDER ABERRATIONS

The factorization theorem of [5] for refracting surface transformations was
instrumental in setting up the characterization of invariance in the form (3.7).
Through the introduction of the “root” transformation phase-space variables (p, q),
applied to the Snell invariant (3.8) in a spherical refracting surface, we obtain
Eq. (4.2). We restate this as

pc+q/n*— p*=S(pc+q./n?— p?). (5.1)

We should remark that whereas the numerical value of k is conserved in (4.2) its
functional form is changed by S, from that in a medium » to that in a medium »’.
Phase space is by no means invariant under S, but only the refracting surface {(g).

We now use the factorization theorem of Dragt and Finn for symplectic maps
[3] to inquire into the coefficients of the homogeneous polynomials S,, S5, Sg,...
present in

S=---expSsexpS, expS;expS,, (52)

1.e., the aberration coefficients. The theorem’s requirement that the origin of phase
space map onto itself means that a ray along the optical axis must remain there.
The center of the sphere, as above, must be on it too.

The spherical surface transformation S for a fixed value of the radius r is one par-
ticular element (or a line—not a subgroup—of elements parametrized by the radius
r) of the infinite-parameter group of general (nonlinear, classic) canonical transfor-




SYMMETRY IN LIE OPTICS 11

mations, %, of optical phase space. Now, S lies in the commutant of m; in €, the
Petzval invariant, generator of axis rotations, due to (3.11). The Snell vector con-
servation, we saw, is a statement of co-variance of the function space, so that the
function g(p, q; n) is mapped by S(n, n’; {) to the function g(p, q; »’). This is the case
of Eq. (4.2), in particular, with the only peculiarity that the functions can be written
explicitly and developed thus in Taylor series. It will be seen below that S is deter-
mined by this requirement, and computable by explicit use of this so(3) covariance
statement.

The decomposition of S into S“S, is a subgroup decomposition into nonlinear
and linear transformations, respectlvely, and so is the aberration subgroup nesting
Syi="Syi28v.1c8Sy_1c8y_,c -89 since {5,,5,)}=Smin_> and
m+n—2>m,n for myn> 2. As we argued intuitively at the end of Section 2, the
group of up-to-Nth order aberrations is now defined as the factor group
S \& =:S,. Due to the nesting, each S, must be generated by algebra elements §,
in the commutant of #1;. Now, s,(p, q) is of polynomial form and order » in the
components of p and q, and must satisfy #iys, =0, but m;p#p and m;q+#q,
however, 715 f(p*, p-q,q>)=0. This means that all odd-n s,(p,q) must have
vanishing coefficients (since every combination of monomials p*ip4ighgh,
k, +k, +1, + 1, =n, must have “unbalanced” vector indices). In the even-n s,(p, q),
only and all monomials (p?)"*(p-q)™(¢*)"~, 2(n, +ny, +n_)=n, may be present.
The axis-symmetric subgroup of % is thus defined and has the decomposition

- 8¢S8,S,, with S, =exp 5,(p°, p-q, ¢°), n even. We now narrow the requirements
for S by imposing (3.7) to a corresponding requirement on each of the S,’s, which
will be algorithmic and will fully determine them sequentially.

First note that, for any fixed order » of s,

Asnr (5w (5 S1 o )00

exp$, f(p.q) = Z —
( z Prncn—2)+1(P: 4 z Qon(n—2) +1(P’Q)>
=/(p

1
|
m=0 m=0
\q'), (53)

where x;(x) (x;=p;, and q;) is a polynomial vector function which is a
homogeneous polynomial of order /=m(n—2)+ 1 in the components of x (x=p
and q). For order n=2 above, we are applying the Gaussian part S, of the surface
transformation S, and there one obtains a series of linear polynomials,
m(n—2)+ 1=1 for all m; this series can be summed [6] to

<p,2>=Sz <p>=e><p[v+1p2+vop'q+vlqz] ) (p). (5.4a)
9> q q
(' BN/ a' B\ [coshv+wv,sinchv  2v_, sinchv > (5.4b)
“\ytét \q/) p'6') | —2v,,sinchv coshv—uv, sinchv ’

v=\/v3—4v, v_,, sinch v =v " sinh v. (5.4¢)
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when keeping up to third-order terms in (5.11). We now use these to replace into
the key equation (5.8), the expressions for p“=p+p;+0(x’) and q“=
q+q; + O(x’) obtaining

1 n—n'
prtqin——p |=(p+ps+——[q+q:])r
n r

+(q+4qs) (n'—L, [p+ ﬂqf) + 0(x%). (5.13a)
2n r

The Gaussian terms cancel as they should, and certain other terms simplify to

1 5 1 n—n \? 5
——pq=psr+qsn——|(p+——q | q+0O(x°). (5.13b)
2n 2n r

Here we replace p; and q; from (5.12), equating the coefficients of the four indepen-
dent monomials p°q, ¢°p, p-qq, and ¢’q (the other two, p’p and p-qp are absent
since A =B=C=0). We obtain, from the first, third, and fourth,

1 /1 1
D:_<_/__>, (5.14a)
4r\ n n
] — 7
E=—"" (5.14b)
2r° nm
1 — 2
F:—3[(n~n')+2u} (5.14c)
8r n

in complete accordance with [6]. (Note that the coefficients A, B,..., F used in [9]
and re-obtained in [5] refer to the decomposition S=S,5%, rather than S“S, as
used here.)

Each of the above coefficients corresponds to one of the third-order Seidel
aberrations [9]. They have been examined individually in some detail in [6]. Thus,
A is the spherical aberration coefficient, B is the coma coefficient, C astigmatism, D
curvature of field, and E distortion; F does not seem to have been given a Seidel
name, since it keeps q fixed and has no effect on a focused image. In [6] we used
the name “pocus,” as it refers to unfocusing in p, diminishing the depth of field at
the edges of the screen. It is the Fourier conjugate to spherical aberration. Note
that the vanishing of 4, B, and C was a consequence only of the placement of the
optical center of the surface at z=0 (free propagation thereafter will produce them,
however). The vanishing of the first three coefficients is valid for any axis-symmetric
surface. What was specific of the sphere is the use of Snell’s conservation statement
in explicit form, namely the key equation (5.8), reduced to (5.13). We note that of
the four independent equations derived from the latter, one of them—the coefficient
of ¢’p—is identically satisfied when the other three are.

The algorithm presented here shortens that which was used previously [5, 6, 7]
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when the surface is not spherical: (i) finding of x(x) through self-replacement in
(3.3) to some agreed order, (ii) finding the inverse x'(x) through an analogous
procedure, (iil) concatenation, and (iv) comparison with the coefficients of x;(x) in
(5.11). Here, (i)-(iii) is replaced by expanding the root and powers in the key
equation (5.8) in Taylor series. As we sketch the case for Nth order aberrations,
this leads to increasing economy in the symbolic computation [18, 19].

6. Nth-ORDER ABERRATIONS

Third-order (Seidel) aberration terms are the most important corrections to
Gaussian optics. Yet it is of interest to proceed systematically further. The task is to
use the key equation (5.8) for aberration orders larger than three. We wrote
S=8,0555¢S,4; if we want to go to ninth aberration order, the ellipses ()
must be disregarded or, equivalently, the classical Poisson-bracket algebra must be
factored modulo polynomials in x of order » > 11. Then, the series exp §, must be
taken up to (§,)* in x, the series exp §¢ up to (§¢)°, and exp §g and exp §,, up to the
linear term. Properly concatenated, this generalizes the third-order expression (5.9):

X(x) = L4800+ 6| T4+ 37 607 |

x [1 +5, + % (54)* + % (54)° + L] (§4)4:| x4+ 0(x')

4!
= x + x3(x) + x5(x) + x5(x) + xo(x) + O(x'); (6.1a)
X3(x) = §,x, (6.1b)
1
Xs(x)=8§¢x+ = 2‘ (6.1¢)
x7(x)=§8x+§6.§4x+ 3 §3x, (6.1d)

xg(x)—slox+5854x+2' 6x+2'sés4x+4' §ax, (6.1e)

where x,(x) contains only terms of order x". Generalizing (5.10), we may write the
general (2N)th order polynomial function of p% p, q, and ¢2, as

S2N(p> q) = Z C;jszzon, Mrunon,(p’ q)a (628)
ny +ng+n_=N
M, o (B @) = (P?)"" (P 4)"™(¢q7)"" (6.2b)

First we shall see which restrictions correspond to the selection rule
A=B=C=0 of last section, setting “essential zeros” among the coefficients; these



16 KURT BERNARDO WOLF

are to be valid for any aberration order and for surfaces which are only axis-sym-
metric. We start with s,, as we did in the last section, and impose on x;(x) in (6.1b)
the optical center conditions (5.6). Then, if Egs. (5.6) are made to hold for x5 = §, x,
they also hold replacing x by §,x or (§,)"x, since the latter is composed of factors of
the former. This eliminates the summand with §, in the expression (6.1c) and below.
When the optical center condition is applied to x5 in (6.1d), it will yield restrictions
on the coefficients in §, which, when satisfied, elliminate all further summands in §,
down the ladder in (6.1). Thus the conditions (5.6) hold indeed, for every
aberration order. It is then sufficient to consider one monomial at a time in (6.2).
From

p/ = {Mn AN — 2 p} :noMru,ngf 1,n_ p + 2”1* Mr1+.no.n, — 1‘1; (633)
q/ = {Mrurnon, ) q} = 2n + Mn+ — L,ng,n — p_n()Mn+,11()7 l,n,q’ (63b)
we obtain
04, -
7, =2n,(p*)" 2P0 =2y —1) pip;16,00 00 0> (6.4a)
pj g=0
0x; _
E zéij_"o(Pz)'1+7l[pz 5(/ F2n, pipj] 5n0,1 5,1,,0» (6.4b)
Jjla=0
ap; . n
8— :2(p2) N pipj 5no.2 571,,0 + Z(PZ) " 5[/' 5n0,0 6;1‘,1’ (640)
qj qg=0
o*pi .
34,04y |y—o =no(ng — 1) (ng —k)(P*)"* PiPy " Pj Onok+1 On_ o4 .. (6.4d)

In (3.7b) x" and x are either q' and q, or p’ and p. Now compare with (5.6). It
follows that

CIIZ,N —m,0 = O’ m= O’ 1,"-’ N (65)

Hence, s,, contains no terms (p*)", (p*)¥ " 'p-q,.. (p>)¥ *(p-q)~,..., (p-q)". This
eliminates N+ 1 aberration coefficients of order 2N — 1. The “hidden symmetry”
selection rule (6.5) has been noted by Forest [8] and Navarro-Saad [7] for
aberration orders seven and nine.

Further, the coefficients ¢} _,,, for the spherical surface may be calculated
noting that (6.4c) must equal the term of order 2N —2 in the series of the
right-hand side of (5.6). Using the series expansion

n-—p :n____;_g_..._ n — B (6.6)
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we obtain the coefficient of (p*)"¥ ~'g?
(2N — 5)!! 1 1
C;\VI—- 1,01 — 2r(2N—2)” n,zN,j, - n2N73 . (67)

Actually, this coefficient holds for general axis-symmetric surfaces as well if we
replace the factor 1/2r by the coefficient of the quadratic term in the Taylor series
expansion of the surface {. This term corresponds to the highest power of p? in the
aberration polynomial, so it is the most important aberration of order 2N — 1 for
rays at large angles. It contributes to p’ with a term 2¢(p?)" 'q and to q' with a
term —2(N — 1) c(p?)"  2q’p, where c is given by (6.7), above.

The N + 2 coefficients we have found above for any aberration order are only the
consequence of placing the optical center at the origin, and are valid for any surface
Uq)=og*+ Bg* +yg°+ -+, as stated before. Let us now proceed with the spherical
surface. For Gaussian and third-order terms, the procedure was detailed in the
previous section and the results are explict. For general aberration order 2N — 1, we
assume we know s4(x), s¢(x),... and s,y _,(x). Following (6.1) we now replace
xX=x4+x3+ " + X553+ Xon_ With x5,..., X5 5 assumed known and

Xon  1(X) =Sy X+ Sy 28sx+ - + '(§4)N"x (6.8)

1
(N-1)

into the key equation (5.8) and read off only the terms of order x*V~! the
aberration order. The series (6.6) expands ./n”— p? in the left-hand side and
J/n'?— p'? in the right-hand side, and power of p'> = (p*+ (n—n’)/rq*)* will yield
contributions of order x*V ' from the first term up to the Nth (this is the
generalization of Eq. (5.13b)). Thus we have an equation homogeneous of degree
2N —1 involving p, q, in powers and $§,yp, §,5q, linearly. We replace now the
general form of §,, from (6.2) aided by (6.3), leaving all coefficients ¢, ,, to be
determined by equating monomials M, . (p,q). We are thus to find the
(N + 1)(N + 2) coefficients c,’l"mwi from N(N + 1) possible monomial equations. Of
the former, N+ 1 are zero and one more is determined in (6.7). The number of
(2N + 1)th order monomials in which p’ and q’ actually expand is N(N—1) and
N(N —2), respectively. There are more equations than coefficients, but each coef-
ficient appears in at most four monomial equations due to (6.3), and the system

solves providing a check on the computation.

7. THE SYMPLECTIC CLASSIFICATION OF ABERRATIONS

In this section we propose a classification of higher order aberrations with a Lie-
theoretic significance which may lead to a deeper insight into the question of non-
linear transformations of phase space. In (5.10) and (6.2) we expanded the
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polynomial s,, generating aberrations of order 2N — 1 in monomials which are like
Cartesian tensors. This is the basis used by Dragt and coworkers [8, 20] which
particularizes their work with non-axis-symmetric elements in accelerators and elec-
tron microscopes, and serves well to express the zeros of some coefficients [cf.
(6.5)].

Ultimately, we want to know the aberration coefficients tabulated in this section
for a spherical surface in order to be able to concatenate them with free-flight trans-
formations and with other lens surfaces which constitute the optical system; and to
do so efficiently. The main part of the system is Gaussian, however, and in attention
to the corresponding group we shall classify the aberrations.

We note that the generators of Gaussian transformations,

~ ~

K, =3, K=ipq ., K =i, (7.1a)
close into an sp(2, R) (2-dimensional real symplectic) algebra under commutation:
[Ko,K.1=+K,, [K,,K 1= —2K,. (7.1b)

The last minus sign above distinguishes this algebra from the so(3) symmetry
algebra of the spherical surface seen in (2.10) in he Cartesian basis. These operators
act on the following 3-dimensional space

1 1

=—— (¢ : 7.2
$e \/— (& +i&y): \/EP (7.2a)
So:=¢&3:=p-q, (7.2b)

1 1

R — l—-7 = —— 2’ 7.2

¢ 2(6 i&5) ﬁq (7.2¢)
and leave invariant
E+8+8=¢62-2, ¢ =—[p¢—(p-9)°]

=—(pxq)’=4K2—K,K_)=: —2Z (7.3)

This is a sphere of imaginary radius given by the value of the Petzval skewness
invariant. The action of the K, on the coordinates &, allow us to realize the former
as

5 0 0
g, —ﬁ<f+a—&)+éo%—_>, (7.4a)

A 0 0
K, 5+?—57?,

) d
K. \[<f°a¢ +5_5§—0>. (7.4c)

(7.4b)
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We now define the symplectic-basis nth aberration order polynomial generators
2NyJ as polynomials in the &, of order 2N =n+1 in the components of p and g, of

spin j, and K,-eigenvalue m (m=j, j—1,.., — j) as follows:
Bgd = B Wyl 2j+4v=2N, (7.5a)
2y ) :\/4n(2j+1)(j+m)z U=m',, ©
" 2j+ 1! "
(j+m)! (j—m)! L () "p-q) > "¢

2j— N gzzk”‘ (k+m) (j—2k—m) k!’ L)

where all indices are nonnegative integers. Here,
E=30r¢—(p 0] (7.5¢)

is the symplectic invariant (7.3) of order four in (p, q), and %/ (&) is the solid
spherical harmonic of integer spin j, projection m and of order 2; in (p, q). The nor-
malization has been chosen [6] for the computational convenience of dealing with
coefficients as simple as possible, starting with

W= (p?Y, (7.6a)

2

and then lowering or raising in m through
KAT— ZNX{n:(mij) ZNX{;I;I' (76b)

We note—useful as a numerical check—that the sum of the absolute values of the
monomial coefficients is unity. This rule served to build *Vy%, and the *Vy/ with
the lower values of j are obtained through multiplication by this “normalized”
skewness invariant Z. We note also that for meridional ray optics, only these
“stretched” *’y/ (with j= N) are nonzero, since &= 0 when p//q. One-dimensional
(or cylindrical-lens) optics [21] require only the latter, therefore.

The symplectic aberration polynomials *Vy/ (p, q) transform under the sp(2, R)
algebra (7.1) as so(2)-classified bases for (finite-dimensional, nonunitary)
irreducible representations of spin j (or so(2, 1) Bargmann [22] label k= — j). The
2j+ 1 members of each aberration multiplet (of fixed (N, j)), transform among
themselves under Gaussian optics with the corresponding finite-dimensional
D-matrices (see [6, Eq. (4.7)]), and do not mix amongst multiplets. This leads to a
block-diagonalization in the composition of the aberration group parameters,
which may be computationally significant.

The generator polynomials S,,(p, q) if (2N —1)th order aberrations given in

(6.2) is thus written as

lor0 J
Sov(p @)= ) Y, VN1, (7.7)
J=N(—=2)m= —j

where for aberration order 2N —1=3, 7, 11,.., the spin j ranges over the values



20 KURT BERNARDO WOLF

J=N,N—-2,..0, and for aberration order 2N—1=5,9,13,., over j=N,
N —2,.., 1. There are (N + 1)(N + 2) aberrations of order 2N — 1. Their values for
the refracting spherical surface are given in the table.

For the important case of third-order aberrations (N =2) given as monomials in
(5.10), the six aberrations break up into a quintuplet *y2 and a singlet *y3 = Z. Con-
cretely, we have
2 =rre B=i0p¢+2(p q)]
=P A’ Y L=(0Y)%

‘10=3Lr’¢’—(p-9)*1. (7.8b)

The m =0 quintuplet aberration has been called curvatism, the singlet astigmature,
while the Fourier conjugate of spherical aberration, *y2 , is pocus. The degenerate
pair mixes astigmatism and curvature of field through

C(p-q)* + Dp*q* = Vi*x3 + Vio*xd (7.8¢)

(-0 (D) o
€020 2/3 —1/2)\vg, Uoo/ 4/3 —2/3 )\ cgxo
The selection rule (6.5) and (6.7) bind the quintuplet and singlet contribution as
03, =13 V3o =3y, for any surface transformation.

The general connecting formula between the monomial and symplectic
polynomial aberrations is obtained from (7.5), expanding Z in (7.3). This yields

(7.8a)

4 2

Z 1"'/1Vj+mn0" nynon - (793)
ng(k)
n (k)=k+m,  nyk)=N—2%k—m, n_(k)=k (7.9b)

nm - Urm) (G —m)t [—1)P—Tp-#—se—s-+2
Iy = (2j—1nn 2 <s> (n, —s) (ng+2s)! (n_ —s)!’ (7.10)

where v= (N — j)/2 is a nonnegative integer. These coefficients in turn connect the
aberration coefficients in the symplectic classification (7.7), v 2"' — 1 as they appear in
the table, and the Cartesian classification of aberratlon coefﬁc1ents by monomials of
the aberration polynomials in their form (6.2), ¢ . They are related through

n+non
1or0

e on = ¥, N3 [N em (7.11)

nynon Jny —n nnon
J=N(-2)
Conversely, the monomial basis vectors can be written in terms of the symplectic

basis vectors as
lor0O

M"+”0"— = Z Lrllvimnon ij’ (7123)

J=N(=2)
N=n, +n,+n_, m=n, —n_. (7.12b)
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We cannot offer the general closed form of L}” ~ but we can find from [13,
Eq. (6.139); 23, Eq. (8;922)], the expansion of x”" in terms of Legendre polynomials
%(x) and applying K, appropriately, for the case n  =0. This corresponds to

n, =m, no=N—m, and recalling that v= (N — j)/2 is integer, we obtain

(N—m)!  (2j+1)!

Ly —mo= (=1 r e S N T DI (7.13)
Applying now K- for m =0, we obtain the 3-term recursion relation for k,
(N—2k—m)(N—2k—m—1) L)Y,
+ [2(N =2k —m)(2k+m+ 1)+ 2k — (j—m)(j+m+1)] L)%,
+4k(k+m) L) =0, (7.14a)
where, as in (7.9),
n,(k)y=k+m, no(k)=N—2k —m, n_(k)=k, (7.14b)

and valid for 0 <k < (N —m)/2. With these intertwining matrix elements, the con-
verse of (7.11) is
2N—-1 - N Nji
v t= X Ly (7.15)
k=0
with (7.14b).

The surface aberration selection rule (6.5) only elliminates the £ =0 summand
above. It is sufficient to allow us to state, however, that no surface will produce by
itself the two highest-m aberration terms:

va-1=0, vt =0, (7.16)
i.e., the direct higher order analogs of sphereical aberration and coma are absent.
The next two coefficients, v}y ', and v3Yy ' are bound to their next j-neighbors,
vV 5!y, and v3¥5!y 5 through the vanishing of ¢} ,,, and ¢} _,;,. In third
aberration, (7.8d) results in v3, = c%,, which is known from (6.7), and vg, =% v3,.
Here the implied relations are

R RV S RN

2j—1 _ j—1 2j—1 2=t o S
=2 J— 21_1 AV A

=c/ 2 ' 2j
ji—2=Ci—101>  VjTaj 2 42j—1 2>

This we may observe in Table I. For values of m lower than j— 3 we have in general
more than two multiplets, and the surface selection rule (6.5) only imposes a con-
dition on the sum of three or more v’s, which stems from (7.11).

The aberration coefficients of free propagation by z are those of Eq. (2.1), times
—Z.
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TABLE 1

Aberration Coefficients (in the Symplectic Basis) of
a Spherical Refracting Surface, to Ninth Order

Third order:
v3,=03,=0
v3o = (m—n)/4rmn
v3_, =(m—n)/2r’m

v}, =(—m?+3mn—2n)/8r’m
v3o = (m—n)/3rmn

Fifth order:
V3, =03, =0
m> —n?)/16rm*n’
03 = (m* + mn? —2n*)/8r*m’n?

3, = (
(

vy, = (5m* —5m?n+ 6mn* — 6n°)/16r’m*n
(
(

vy =
vi, = (m*—n3)/10rm*n?
v3y = (m* + mn? —2n*)/10r’m’n?
v} _, = (mn—n?)/10r’m?

Seventh order:
0], = o}y =0
v}, = (m®—n®)/32rm*n®
viy = (m®+m?n® + mn* —3n°)/16r*m*n*
vl = (23m° + Tm?n’ + 60mn* — 90n°)/192r3m’n?
v, = (14m° — 15m®*n + 18m>°n* — 1Tm?n> + 30mn* — 30n°)/48r*m>°n>
v] = (—16m°+75mn—93m*n® + 82m’n* — 63m>n* + 60mn* — 45n°)/96r°m*n*
v] 3 =(—Tm®+26m’n —33m*n> + 28m>n* — 20m*n* + 15mn® — 9n®)/48r°m°n
v] o =(—8m"+ 1Tm®n + m°n? — 28m*n* + 40m’n* — 34m?n° + 24mn® — 12n")/384r'm°n

v], =3(m> —n3)/56rm°n®
v], = (m® +m*n® + mn* —3n°)/14r’m°n*
v3o = 3(m> + 2mn* — 3n°)/28r*m*n’

vl =(2m* —m’n—mn*+ 3mn® — 3n*)/14r*m’n

vl 5 = (8m®—2Tmn + 36m*n® — 20m>n> + 12mn°® — 9n®)/168rmn?
v = (m* —n®)/30r°m3n?

Ninth order:

v3s =03, =0
vy =5(m” —n’)/256rm’n’
v, = (3m’ + 4m?n® + 3mn® — 10n7)/64r*m'n®
v2, = (14m’ 4+ 3m°n* — Tm*n® — Sm’n* + 26m*n°® + 42mn® — 70n7)/128rmn’
v3y = (35m” — 15m®n + 18m°n> — 2Tm*n® + 3mn* + 126mn® — 140n7)/128r*m’n*

For passage from a medium of refraction index » to a medium of refraction index m; r is the sperical
radius.

Table continued
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TaBLE —Continued

v? = (—9m®+82m’n — TIm°n? + 87Tm*n® — 120m*n* + 106m>n’ — 110m?ns
+210mn” — 175n%)/128rm"n

02, =(—17m® + 80m’n— 99m®n? + 118m°n> — 134m*n* + 117m’n®
— 100m?n® + 105mn” — 70n%)/64rSmn’

0?3 =(—T2m®+281m"n —393m%n? 4 486m°n> — 522m*n* + 432mn°
—324m?n® + 252mn’ — 140n%)/256r'mn?

v? = (—8m’+21m*n— 12m'n* — 19m®n® + T4m°n* — 105m*n°® + 91m>ns
— 64m>n” + 42mn® —20n°)/128r8m’'n?

v? o= (—35m®+133m"n — 245m%n® 4 340m>n> — 364m*n* + 302m°n°
— 190m?n® + 84mn’ — 25n%)/1280r°m’

v3; = 5(m" —n")/144rmn’
03, = (3m” + 4m*n® + 3mn® — 10n7)/48r°mn®
05, = (13m" + 3m’n* — Sm*n® — dm>n* + 13m?n° + 30mn® — 50n7)/96r>m’n’
9 = (17m" — 6m®n + 9Imn® — Im*n® + 3m3n* — Im?n® + 45mn® — 50n7)/72r*m"n*
vy =(—6m®+29m'n —Tm®n? + 3m>n> — Im*n* + 14m>n® — 34m*ns
+60mn’ — 50n%)/96r°m’n*
v _o = (m®—Tm'n+ 21m®n? — 20m°n® + 10m*n* — 10m*n® + 15mn” — 10n%)/48r°mn>
v3_3 = (9m® —41m’n + 18m°n* — 81m°n’ + S4m*n* — 18m°n> — 9m?n®
+ 18mn” — 10n%)/288r'mn?

v}, = (Tm> 4+ 2m3n* + 4mn* — 13n°)/140r3m*n®
v}y = (Tm® —m*n + 4m’n? + m*n’ + 3mn* — 14n°)/140r*m>n*
v] = (m®+m’n—3m*n? + 2m°n® + dm*n* — dmn® — n®)/140r°m°n*

8. CONCLUDING REMARKS

We have tabulated the Gaussian and aberration coefficients to order nine for the
transformation of optical phase space due to the spherical refracting suiface.
Although the treatment of refracting surfaces is in itself an interesting endeavor and
much of the global properties remains to be studied, our final objective is to
describe optical systems. For this, we must concatenate transiormations described
by Gaussian part an aberration coefficients. This was done explicitly for the case of
third-order aberrations in [6,24], since it involves only a 9-parameter
inhomogeneous symplectic group (/s ®7,;)® Sp(2, R). There, Sp(2, R) acts on
aberrations in /5 through a 5-dimensional representation which is simple enough to
write explicitly [6, Eqgs. (4.5) and (4.6)], and aberrations only sum, since they con-
stitute an abelian ideal.

For aberrations of order higher than third, the action of Sp(2, R) on them is also
through finite representation matrices; however, aberrations not only sum, but com-
pose into aberrations of higher order. Computationally, this has been solved in
MARYLIE [20] through the use of Baker—Campbell-Hausdorff relations in a
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program which works with non-axially symmetric systems. (We should note
carefully that Lie maps differ from optical ray-tracing algorithms in that the Lie
map is, in principle, given analytically, and the concatenation or integration need
be performed once for the system. Thereafter, the mapping of individual rays is
more economic.) Work in progress indicates that the necessary expressions for the
Poisson brackets {*y/,*"'y7.} involve Clebsch-Gordan coefficients (without
square roots). This Raccah-type algebra is under development [15].

The “merely” group-theoretical aspects of our construction should not be
slighted, however, as certain other common refracting surfaces may yield to the
same methods. Spherical surfaces are special in that the surface roor transfor-
mations (3.3) solve exactly as a second-order equation. This is a property shared by
planes, revolution ellipsoids, paraboloids, and hyperboloids. In terms of canonical
representations of algebras [257], the Poisson brackets between functions of p?, p - q,
and ¢°, are actually the Berezin brackets [26] for sp(2, R). The problem thus turns
into that of exploitation of the covering algebra of the symplectic algebra, rather
than the Heisenberg-Weyl algebra, as is usually done in mechanics. The
homogeneous space on which the corresponding Lie group acts is the optical phase
space. There, we have p and q again, in addition to functions of the sp(2, R)
generators, leading to half-integral spin *Vy/’s. For aberration order three, see
[5,24].

Finally, the “wavization” of these systems replaces the Sp(2, R), 2 x 2 matrices,
by canonical integral-transforms [27]. There, p and § are the Schrodinger
operators and the representation of Sp(2, R) is the metaplectic one on the space of
phase functions. The lens transformations beyond Gaussian order also integral
transforms in general. This is presently under development too.
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