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HARMONIC ANALYSIS ON BILATERAL CLASSES*

KURT BERNARDO WOLF* anp THOMAS H. SELIGMANi

Abstract. The theory of harmonic analysis over coset and conjugation class spaces in groups is
generalized to functions over the space of bilateral classes. The latter are novel equivalence sets which include
the above as particular cases. The relevant orthogonal function bases are partial traces. The standard
harmonic functions and characters are recovered as special examples.

1. Introduction. Equivalence classes of group elements are among the main
objects of study not only of group theory per se, but of any branch of mathematical
physics which requires homogeneous spaces for group action. Closely related to these is
the theory of group representations and the associated harmonic analysis. All textbooks
on this matter introduce the concepts of cosets and of conjugation classes, and the
ensuing developments of harmonic functions and characters are ubiquitous throughout
the literature. It is thus perhaps surprising that a generalization of these two cases of
equivalence classes can be defined rather naturally, and certain consequences drawn
which somehow seem to have escaped notice by several generations of thorough
workers in this field.

The need for a more general classification of group elements in equivalence classes
exhibiting a certain correlation between the right and left group action arose originally
in applied studies in quantum chemistry [3]. They concerned the classification of
transition amplitudes between certain molecules called permutational isomers, which
differ only in the way in which the ligands are distributed on the skeleton. The
mathematical meaning and subsequent construction of what are now called bilateral
classes were explored shortly thereafter, and appeared in condensed form in [4]. A
more complete discussion is given in [5]; some of the results of this paper were briefly
summarized in [7].

As the construction of bilateral classes is not yet widely known, we shall restate the
relevant points in § 2, stressing certain particular cases. Section 3 sets up the notation
and the needed subgroup reduction adapted to the most general bilateral class partition
such that functions of this space can be subject to a reduced harmonic analysis. The
complete and orthogonal basis function set, which we call partial traces, is then
constructed in § 4. In the two traditional cases of cosets and conjugation classes they
reduce to the well-known spherical functions and characters. In § 5 we offer some
concluding remarks.

2. Short survey of bilateral classes. The elements of a group G can be partitioned
into a complete family of disjoint sets through an equivalence relation. Equivalence
relations with group theoretical significance which have been fruitfully exploited are
those which lead to left, right or double cosets, or conjugation subclasses: if H and K
are subgroups of G, ge G, h € H, k € K, then the above relations are g’ ~ g iff there exist
h, k, such that, respectively, g’ = hg, g'= gk, g'= hgk or g'=hgh ™"

A generalization of the above relations with group-theoretical definition makes
use of the following construction.

(a) Let(g, g2) € G X G, and consider the action of this group on the elements ge G
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given by

(8485

(1) g——>g' =gigg2 "

(b) Select a subgroup P < G x G and introduce the following equivalence relation
between the elements of G:

P =
(2) g ~go3(g.8)ePlg =188 "

P
The properties of symmetry, reflexivity, and transitivity hold for ~, since P is a group.

P
The equivalence relation ~ thus partitions G into a complete family of disjoint sets
which we call bilateral classes or, more specifically, P-bilateral classes. The bilateral
class containing an element g; € G is the set

3) Bf ={g.88: ", (81, 82)e P< GX G}.

The exploration of all possible subgroups P of G X G (sometimes called subdirect
products of G with G) was undertaken by Goursat [1], who showed that the relevant
structure is described by the quintuplet

P{H, H; ¢; K, K},

where H<H < G> KK, (H and K are subgroups of G, and H and K are normal
subgroups, respectively, of H and K), and where ¢ : H/H - K/K is an isomorphism
which correlates the factor groups.

The elements of H/I:I and K/IE' are sets of elements in G. Out of each one of these
we can choose a representative 1 € # and k € %, where % and % are sets of elements in
G which need not form a group. Different representatives 4, k of the same element of
the factor groups may be obtained through multiplication by elements of the normal
groups. We subduce from the isomorphism ¢ a one-to-one mapping ¢ : 9 - % which by
abuse we denote through the same symbol as ¢(h)=k. The equivalence relations (2)
may then be presented in more detail as,

@) ¢ ~geIhecH hedk keRlg = hhge(h) k.
The bilateral class (3) of an element g; is then characterized as the set
(5) Bf=Hhge(h) 'K, he¥k

The number of elements of P is |P|=|H||K||H/H|. If P, is the stability group P of a
given element g, then the number of elements of B is |[Bf|=|P|/|P,|. Of course, |P,|
divides |P|, and |P| divides |G|’.

As particular cases of the P-bilateral classes we have the following classical ones.
Left cosets of G by H are determined by P = H X e = H given through P{H, H; —;
e, e}, where e is the group identity in G and the dash indicates that the correlation
function is trivial. Right cosets by K are characterized by P =e¢ xK =K through
Ple, e; —; K, K}, and double cosets by P= H x K through P{H, H; —; K, K};i.e., the
left and right factors in (1) are uncorrelated. Finally, conjugation subclasses of G by H
correspond to P=(H X H)p=H given though P{e, H; ¢.; H. e}, where ¢, is the
identity isomorphism in H; i.e., the right and left factors in (1) are totally correlated.

A particular case which is of practical importance occurs when the group H splits,
i.e., when it is a semidirect product H = H n H, H<H = H. In that case % may be
identified with H, because a set of representatives exists whose elements form by
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themselves a subgroup of G. When H = H » H and K = K 1 K. every element of these
groups can be decomposed uniquely as h = hh=hh' and k = kk = kk'. In this case
¢ : H~ K is an isomorphism between subgroups of G.

Bilateral classes defined by P{I:l H; ¢ K, K} where H and K split will be related
now to bilateral classes defined through Pfe, H; ¢; K, e}, where K = (p(H and to
double cosets defined through P{H. H; —; K. K}. For the former, P=H and
(6) g ~g¢:>3heH|g = hge(h)™!

The set containing g;.

(7) CY =Hge(H) ™,

will be called a p-twisted subclass. A bilateral class P{H, H; ¢; K, K} in this case is the
union of an entire number of ¢-twisted subclasses P{e, H ¢; K, e} (as in (7)) whose
representatives g; are subject to the double-coset equwalence relation defined by P{H,
H; —; K K}. Conversely, the same bilateral class consists of an entire number of the
latter d'ouble cosets whose representatives are subject to the ¢-twisted subclass
equivalence relation (6). Note that whereas in general a bilateral class always consists of
a direct union of double cosets P{H, H: —: K K }, the decomposition into ¢-twisted
subclasses occurs only when H and K split.

There are two main types of ¢-twisted subclasses P{e, H; Q; K, e}: those which are
defined by conjugation automorphisms ¢,(h)=lhl"', and those which are not. The
former may be extended from H to the whole of G, and further classified into those
which are inner to H (i.e., [ € H), and those which are outer to H but inner to G (i.e.,
I¢ H but [ € G). The following result allows us to recognize ¢-twisted subclasses
defined by conjugation automorphisms, and to determine all the possible extensions to
G

A ¢-twisted subclass partition of G by a subgroup H stems from a conjugation
automorphism if and only if there exist classes consisting of a single group element. The
¢-twist is then induced by an element / € G, where Iis any of the one-element classes.

In order to prove this statement, consider the centralizer Z of HinG,ie., zh=hz
for all ze Z, he H. The set Z contains at least e. Then, every element z € Z is an
(untwisted ¢,) conjugation subclass of G by H, and every z/ " (for fixed [ € G) will be
a ¢-twisted conjugation subclass. Conversely, let /' € G be a single-element ¢-twisted
subclass of Gby H.i.e.,!”' = hl"'o(h) ' forall h € H; it follows that the automorphism
¢ is given by @(h) = Ihl™". If we replace [ by any /z, z € Z, the new automorphism will
coincide on H with the original one, but its extension to G will be different for elements
of Z which are not in the center of the latter.

It is also evident that if C{< is an ordinary (i.e., untwisted) subclass, then for any
conjugation automirphism ¢, the corresponding ¢,-twisted subclass will be C{' =

Ctl™ ' e, gpff')g’c>gl P(fe)g’l. The ¢;-twisted partition of G is thus simply a right
translate by [~ of the untwisted conjugation class partition.

If the automorphism ¢ defining P < G X G is outer to G, the above arguments no
longer hold.

3. Representations and subgroup adaptation. In describing harmonic analysis in
this article, we shall consider only the case when G is a discrete, finite group of |G|
elements. This is done in order to keep our considerations as simple as possible, without
involving ourselves with the definitions of Haar and Plancherel measures. The structure
of the results in this and the following section, however, will point to a straightforward
generalization to compact Lie groups and, provided sufficient knowledge is available
about the Plancherel measures, to locally compact Lie groups as well.
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Let the Unitary Irreducible Representations (UIR’s) of G be labelled by v, y€ G,
and let D}, (g) be the UIR matrix elements with row and column labels p and p". Let the
dimension of D” be d(y). Then, it is known [2] that the UIR matrix elements form an

orthogonal and complete set of functions over G.
We can also define skew UIR’s [6] by choosing two unitary matrices U and V, and

writing

(8) A"(g)=U'D"(g)V.

The representation properties then require the use of a metric .V+U as
© A7(g'g)=A"(2)V'UA(2).

This set of skew UIR matrix elements has the same orthogonality and completeness
relations as the ordinary UIR’s:

(10a) Y AL (8)*A2.(8)=8,,8,,8u.|Gl/d(y),
ge G
(10b) }: al!(Gyl) Y A(E) AR =3g 0

where the 6’s are Kronecker symbols over G, G and the d(y)-dimensional space of
rows and columns, as implied by the context. Any complex-valued function A(g) with
domain on G can be thus expanded in the basis afforded by the skew UIR matrix
elements as

(11a) A(g): ZG Ié;yl) Y AZI-LAZA-L(g)*-
ve pu

The generalized Fourier coefficients A” are matrix-valued functions on G which can be
determined through

(11b) A=Y A(gALg)
geG

The unitary transformation matrices U and V may be chosen to symmetry-adapt
the row and column labels to different chains of subgroups: we may choose p = (p, 7, r)
where 7 labels the UIR’s of H < G, p resolves the multiplicities in the subduction from
v to 7, and r is some column label for D"(h), the UIR’s of H. Similarly, we choose
w =(q, «, s), where « labels the UIR’s of K < G.

This sequence adaptation allows for the relation

(12) AYoraxshgk™) =T D7 (WA 4es(8)D5s(k ™).

We shall now consider the sequence adaptation to the chains of subgroups which
are relevant for the decomposition into P-bilateral classes. In descending along the
chains H<H < G and G > KK, we are interested in those representations of H and
K which contain the trivial (unit) representation of the normal subgroups. We denote
these by 1o and ko. These are the most general UIR'’s of the factor groups H/H and
K/K. (This fact may be most familar to the reader in the case of the Poincaré group,
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where the representations containing the null momentum are labelled by the UIR’s of
Lorentz group.) Finally. because the elements of the factor groups H/H and K/K are
related through the isomorphism ¢, we may choose the row-and-column labels of their
UIR’s such that

(13) D3 (he)= D3 (@(hy)) = D} (hy).

where hye H/H and r labels the UIR’s of the factor group.

Having made the above considerations on the UIR row and column indices
following the structure of p{H, H; ¢; K, K}, we shall now relate the space of bilateral
classes to a remainder of these indices.

4. Functions over the space of bilateral classes and partial traces. We shall con-

sider functions A on G which are constant over bilateral classes B, i.e., g’ 5g:>
A(g') = Alg), and which thus may depend only on the bilateral class to which g belongs.
We will express them as A(g;) = A(B;), where B; €I and I is the space of P-bilateral
classes. The Fourier coefficients of such functions will have corresponding restrictions
and independences, as we shall now see. The sum over the group G in the Fourier
analysis formula (11b) can be split into a sum over the |B,| elements g € B, times a sum
over B;, B; € I'. The former, in turn, will be expressed as sums (due to (4)) over the group
elements of H, K and some of representatives A in %, that is,

(14) Apnrges = Z AB) L Apya(8)-
-4

eB

We shall now calculate the last sum using (a) the decomposition (12)—(13) of the last
section; (b) the orthogonality relation (10a) for each of the subgroups in question,
noting that the one-dimensional trivial representation appears for H and K ; and (c) the
fact that the stability group P; of any one element g in B, has |P|=|P|/|B)|=
|F||K||H/H|/|B;| elements. As a matter of notation, we shall indicate by a bar (as 7 and
§) the row indices of the representations (as r and s) of H/H=K/K.

We can thus write: .

Z A ;nr‘qxs(g)

geB
1 o
:_IPI L L _Z ;’-(hh)A qKS'(gi)D:'s((P(h)_lk)
i| r's'" he¥ heH ke
H||K
1s :5,,%(7)5“0(7,)| LS DR

|Pi| 7’5" hjeH/H
'A;no(r)r".qxo(r')f‘(gi)Dr”(h;I )

|Bi|
:6n~no(r)5x.xo(f‘157.f‘5rs d( )ZA 0(1)qun(r)f(gi)~

The first expression is thus diagonal in, and independent of, the row and column labels
of the H and K UIR’s, namely r and s. It depends only on the G UIR index v, the H/H
UIR index 7 and the possible multiplicity indices p and g. This implies that the index
dependence of the Fourier coefficients (14) will be restricted likewise to

(16) A;nr qks =6 11.110(1-)8 K.K()(T')B r,-r‘arc A;-rq
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We define the partial traces associated to the bilateral class partition P{ﬁ, H;¢; K,
K} as
vaq(B )= Z Apno(‘r)l qK (1) (&)

(17)
_d(r)

Bl «55

These will be an orthogonal and complete set of functions on the space I of P-bilateral
classes since, from (10) and through steps analogous to (15) and tracing, we obtain

1By

z Apn (r)i, qxo(f)!(g)

(183) Z d( )Xp 7'q’ (B )*X (B ) 61'.y87',76p'.p5q'.qIGl/d(y)
: d B;
(18b) b3 dby] z 1B Xprg (B)* X prq(B)) = 8,

veG lGl p.7.q d("')

Thus any function on I' may be expanded as

d
(19b) AL = 'B| A(B)XLa(By).
o e d(7) Xpra

Since the bilateral class partition generalizes the coset and conjugation subclass
partitions the partial traces (17) will generalize harmonic functions and characters over
the group. Thus, for left cosets P{H, H; —; e, e}, the sum over the row indices 7 of
H/H = {e} disappears. The partial traces become the harmonic functions D ;5 4(B;) over
the manifold of left cosets, where the row index is specified by an appropriate
multiplicity label for the subduction G > H which contains the trivial representation of
H. The column index q is fully determined by a complete subgroup chain of G.
Similarly, right cosets P{e, e; —; K, K} lead to “‘spherical harmonics” D} 40(B:), and
double cosets P{H, H; —; K, K} to “diamond Wigner d-functions” Do q0(B;). For
ordinary conjugation classes Ple, G; ¢.; G, e} we have the usual characters y*(B;) =
Y, D;,(B:), while for conjugation subclasses P{e, H; ¢.; H, e}, the x ;.o (B;) are as given
by (17) for the row and column labels referring to the same subgroup chain.

For the case of split subgroups and ¢-twisted subclasses defined through con-
jugation automorphisms ¢, as P{e, H; ¢;; K, e}, K = [HI"'. The group subgroup chain
for the column indices of the UIR matrices is thus obtained from the row indices
through a transformation by / as

(20) ' A%(8)=L D3 ()D% (1),

where by D”(-) we indicate UIR matrices whose rows and columns are classified by the
same subgroup chain. The values of the partial traces for a ¢-twist will thus be equal to
the ordinary partial traces mentioned above, but valued at the class Cf = C¢</"'. The
Fourier coefficients of functions constant on C{ can be referred to the same subgroup
chain, in place of (16)-(19b), as

(21a) “’A;,,,,,,—Z Ay D rars(),
€AY |C'WI P\ Y @
(21b) Apw= Y == A(CT) X g (CTD).

C%erl’ d(T)
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In the above, 7 refers to the UIR label of H. If we now let A(CY ) be constant over
double cosets by H and K, i.e., A(C{ )= A(hC{k) the multiplicity indices p and g must
be replaced by (p, n) and (q, «), while constancy over these sets now imposes &, ,,, and
8 ..« factors, reducing the number of independent Fourier coefficients in (21) to those
containing the trivial representations of H and K.

5. Conclusion. We have extended the classical results of harmonic analysis on
cosets and conjugation classes to bilateral classes. This unifies their treatment as well as
that of a number of other special cases. From a practical point of view this result may
also be quite useful, e.g., if we keep in mind the original applications [3]. Assume we
wish to describe functions valued over the different transitions; these can certainly be
expanded and analyzed with respect to their harmonic components. Such a procedure
has proved useful in many applications and the possibility of performing it in this new
situation seems relevant.
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