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Abstract
In geometric optics the Maxwell fish-eye is a medium where light rays follow
circles, while in scalar wave optics this medium can only ‘trap’ fields of certain
discrete frequencies. In the monochromatic case characterized by a positive
integer ℓ, there are +ℓ2 1 independent fields. We identify two bases of functions:
one, known as the Sherman–Volobuyev functions, is characterized as of ‘most
definite’ momenta; the other is new and composed of ‘most definite’ positions
and normal derivatives for the fish-eye scalar wavefields. Their construction uses
the stereographic projection of the sphere, and their identification is corroborated
in the → ∞ℓ contraction limit to the homogeneous Helmholtz medium.

Keywords: Maxwell fish-eye, function bases on spheres, position and
momentum functions, Sherman–Volobuyev functions, algebra and group
contraction, Helmholtz medium

(Some figures may appear in colour only in the online journal)

1. Introduction

The Maxwell fish-eye is one of the ‘perfect’ geometric optical media studied by Luneburg [1,
chapter 28]; it is the stereographic projection from free motion on a sphere onto an inho-
mogeneous optical medium where ray trajectories are circles. In scalar wave optics this
correspondence is mantained with an obliquity factor, subject to the restriction that the
wavenumbers in the field be in the spectrum of the Hamiltonian operator on the sphere; this is
proportional to squared angular momentum, i.e., to the Casimir operator of the Lie algebra
that generates rotations. A well-known basis for each eigenvalue subspace is that of spherical
harmonics, and thus their projection on the fish-eye medium.
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The contraction limit of the sphere to the plane yields the homogenous, monochromatic
optical Helmholtz medium. In this limit medium one has the well-known basis of plane waves
and a basis of Bessel functions on an appropriate set of points, the latter being the best-
localized wavefields and normal derivatives in that medium [2]. Understood as bases of
‘momenta’ and ‘positions’, the two are related by the wave transform—essentially a projected
Fourier transform. In this paper we find the pre-contraction of these two bases on the sphere,
and thus on the fish-eye. The ‘momentum’ wavefunctions on the sphere are related to the
Sherman–Volobuyev functions [3, 4]; these are a set of extreme spherical harmonics Yℓ ℓ, ,
rotated so that their oscillation belts lie along meridians. The corresponding pre-contracted
‘position’ wavefunctions on the sphere turn out to be a set of rotated ‘mid’-spherical har-
monics, Yℓ,0 and + −Y Yℓ ℓ,1 , 1. The latter we set forth as a basis of best-localized ‘position’ and
‘normal derivative’ functions on the sphere, as well as on its projected fish-eye.

The N-dimensional Maxwell fish-eye is ‘perfect’ because it has a higher symmetry group
SO( +N 1) as shown by Buchdahl [5], within a higher hidden symmetry SO( +N 1, 2) [6]
that is conformal and canonical [7, chapter 6]. It can be thus related to the Kepler and Bohr
systems that exhibit the same symmetry [8, 9]; it has supersymmetric features [10], and its
various versions also describe classical and quantum systems with position-dependent masses
[11–13]. The bases of momentum and position introduced here can be plausibly corresponded
with similar ones in those systems.

We work with two-dimensional media for graphical convenience, with the stereographic
projection shown in figure 1 that is detailed in section 2. This also describes waveguides with the
fish-eye refractive index profile; three- and higher-dimensional versions require hyperspherical
harmonics but without further essential changes. Section 3 collects the transformations and limits of
the orthonormal basis of spherical harmonics that are needed below. The normalized and adapted
Sherman–Volobuyev basis is given in section 4, while what we termed Legendre bases of
‘positions and normal derivatives’ are developed in section 5. Neither basis is orthogonal though, so
wavefields expressed in these bases will present non-local inner products for their expansion
coefficients. In section 6 we perform the contraction to the homogeneous Helmholtz medium and
verify that the limit yields the bases and unique Euclidean-invariant inner products determined in
[2, 14, 15]. Finally, in section 7 we gather some conclusions and perspectives on the use of function
bases (rather than eigen-function bases) to obtain a working definition of phase space for the sphere
and fish-eye, which are systems whose wavefields live in finite-dimensional Hilbert spaces.

Figure 1. The stereographic map: the top pole of the sphere 2 of radius ρ is tangent to
the optical plane 2 of the two-dimensional Maxwell fish-eye medium. Free motion on
the sphere maps onto motion in circles in the fish-eye (continuous lines). The equator of
the sphere maps onto a ‘minimal circle’ centered on the origin of the fish-eye plane and
of least radius ρ2 (dashed lines). A point with colatitude angle θ on the sphere subtends

an angle θ1
2

from the bottom pole and maps on the point ρ θ=x 2 tan 1
2

in the fish-eye.
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2. The stereographic projection

The two-dimensional sphere 2, in an ambient space of three dimensions, is projected on the
two-dimensional optical medium 2 of the Maxwell fish-eye [16], as shown in figure 1.
Points of the sphere Ω θ ϕ≡ ∈( , ) 2 of radius ρ > 0, are mapped on points

ϕ ϕ= ≡ ∈x y rr ( , ) (cos , sin ) 2 of the fish-eye plane, through

θ ρ θ ρ
ρ

θ ρ
ρ

= =
+

= −
+

r
r

r

r

r
tan

1

2
2 , i.e. sin

4

4
cos

4

4
, (1)

2 2

2 2

2 2

where = ∣ ∣r r: while ϕ = y xtan : is the same angle in both spaces.
The top pole of the sphere θ = 0 thus maps on the center of the fish-eye =r 0 while the

bottom pole θ π= maps to infinity; the equator of the sphere θ π= 1

2
, maps on the minimal

circle, which is centered on the origin and has radius r = 2ρ. It is shown that on the plane this
corresponds to an optical medium of refractive index [1, 5, 16]

ρ= + =( )n r n r n( ) 1 4 , : (0). (2)o o
2 2

Of course, a physical medium is constrained by ⩾n 1, but this is not a mathematical
impediment as long as >n 0, which allows for all ∈r 2.

In the geometric-optical model there is a canonically conjugate map in momentum space
[7, section 6.4]. This requirement of canonicity is replaced by unitarity in the Hilbert spaces of
wave optics. These transformations are reversible and hence conserve the information con-
tained in their respective wavefields.The unitary map of square-integrable functions on the
sphere,  Ω ∈F ( ) ( )2 2 onto wavefields  ∈f r( ) ( )2 2 in the optical plane by (1), deter-
mines a relation between the measures on the sphere and the plane

Ω θ ϕ ρ
ρ

ϕ= =
+

⎛
⎝⎜

⎞
⎠⎟r

r rd dcos d
4

4
d d . (3)2

2 2

2

Functions on the sphere and on the fish-eye must therefore be related with an obliquity weight
factor

ρ
ρ

Ω Ω ρ θ Ω=
+

=f
r

F F fr r r( )
4

4
( ( )), ( ) sec

1

2
( ( )). (4)

2 2
2

The standard inner product between functions on the sphere integrate over its π4 surface,
while wavefields on the fish-eye are integrated over 2 and bear units of ρ1 due to the
obliquity factor. The unitarity of the map (4) determines a Parseval relation between the two
function spaces,

R
  ∫ ∫Ω Ω Ω= = =F G F G f g f gr r r( , ) : d ( )* ( ) d ( )* ( ) :( , ) . (5)2 22

2 2
2

3. Harmonic basis on the sphere

The generators of the Lie algebra so(3) of rotations are the well-known angular momentum
operators ⃗ = − ⃗ × ⃗ ⃗L si s, ⃗ ≡ ∈s x y z( , , ) 3, that obey the commutation relations

=L L L[ , ] ii j k, with i j k, , a cyclic permutation of x y z, , . The self-adjoint irreducible matrix

representations of this algebra act on the eigenspaces of the Casimir operator = ∑L Li i
2 2
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with eigenvalues +ℓ ℓ( 1), and are labeled by the non-negative integer ℓ. The eigenspaces
have dimension +ℓ2 1 and spherical harmonics are then classified uniquely as eigenfunctions
of Lz, whose spectrum consists of the integer-spaced eigenvalues ∣−m ℓ

ℓ .
In the sign convention of Biedenharn and Louck, the spherical harmonics are explicitly

given by [17, equations (3.141)–(153)]

θ ϕ
π

θ

θ ϕ θ ϕ

= − + −
+

= − − = −

ϕ

− −

Y
ℓ ℓ m

ℓ m
P

Y Y

( , ) ( 1)
(2 1)

4

( )!

( )!
(cos )e

( 1) ( , ) ( 1) ( , )*, (6)

ℓ m
m

ℓ
m m

m
ℓ m

m
ℓ m

,
i

, ,

where ζP ( )ℓ
m are the associated Legendre polynomials. They form an orthonormal and

complete basis for  ( )2 2 , namely  δ δ=′ ′ ′ ′Y Y( , )ℓ m ℓ m ℓ ℓ m m, , , ,2 . For fixed ℓ, and under the same

inner product (5), the subset Ω =−Y{ ( )}ℓ m m ℓ
ℓ

, forms an orthonormal and complete basis for a
+ℓ(2 1)-dimensional space that we indicate by ℓ. In particular, we shall use below the

extreme ( =m ℓ) and the mid (m = 0) spherical harmonics

θ ϕ
π

θ

θ ϕ
π

θ

= − +

= +

ϕ( )Y
ℓ

ℓ

Y
ℓ

P

( , )
( 1)

2 !

(2 1)!

4
sin e ,

( , )
2 1

4
(cos ). (7)

ℓ ℓ

ℓ

ℓ

ℓ

ℓ ℓ

,
i

,0

On the fish-eye plane, the wavefields corresponding to the spherical harmonics will be
indicated by lower-case letters; according to (1) and (4), they are

ρ
ρ

Ω=
+

y
r

Yr r( )
4

4
( ( )). (8)ℓ m ℓ m, 2 2 ,

These functions will also be an orthonormal and complete basis for ℓ under the inner
product (5) that integrates over 2. In figure 2 we display some of these functions on the
sphere and their corresponding projection in the fish-eye plane. We recognize the latter as the
monochromatic multipole wavefields.

Azimuthal rotations (around the z-axis), generated by ϕ= − ∂ ∂L iz through α− Lexp( i )z

multiply the spherical harmonic functions by phases: θ ϕ α θ ϕ− = α−Y Y( , ) e ( , )ℓ m
m

ℓ m,
i

, . On
the other hand, polar rotations (around the y-axis) yield linear combinations in ℓ as

∑β θ ϕ θ ϕ β− =
′=−

′ ′( )L Y Y dexp i ( , ) ( , ) ( ), (9)y ℓ m

m ℓ

ℓ

ℓ m m m
ℓ

, , ,

where β′d ( )m m
ℓ

, are the Wigner little-d functions [17, equation (3.72)], explicitly

β

β β β

β β

β

= +
+ ′

−
− ′

×

= − = −

= −

′

− ′ + ′
−

− ′ + ′

′
− ′

′
− ′

− ′ −

( ) ( )

d
ℓ m

ℓ m

ℓ m

ℓ m

P

d d

d

( )
( )!

( )!

( )!

( )!

sin cos (cos )

( ) ( 1) ( )

( 1) ( ), (10)

m m
ℓ

m m m m

ℓ m
m m m m

m m
ℓ m m

m m
ℓ

m m
m m

ℓ

,

1
2

1
2

( , )

, ,

,

with ζμ νP ( )n
( , ) a Jacobi polynomial.

The + × +ℓ ℓ(2 1) (2 1) matrices β β= ∥ ∥′dd ( ): ( )ℓ
m m
ℓ
, are real, orthogonal, and compose

as β β β β= +d d d( ) ( ) ( )ℓ ℓ ℓ
1 2 1 2 , =d 1(0)ℓ , and β∣ ∣ ⩽′d ( ) 1m m

ℓ
, . For later use we record the
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following relations [17, chapter 3]

θ ϕ
π

θ π= + =
+

ϕ ⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠Y

ℓ
d d

ℓ

ℓ m
( , )

2 1

4
( )e ,

1

2

1

2

2
, (11)ℓ m m

ℓ m
m ℓ
ℓ

ℓ, ,0
i

,

and the limits

ρ
ϕ ρ

π ρ
= − =

ρ

ρ
ϕ

ρ

ρ

→∞

=

→∞

=
′ − ′

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟Y

r k
J kr d

r
J krlim , ( 1)

2
( )e , lim ( ). (12)

ℓ k

ℓ m
m

m
m

ℓ k

m m
ℓ

m m,
i

,

4. The normalized Sherman–Volobuyev (nShV) basis

The Sherman–Volobuyev functions [3, 4] are proportional to the extreme spherical harmonics
θ ϕY ( , )ℓ ℓ, in (7), rotated by the polar angle β π= 1

2
, so that their oscillation belts lie along

Y5,0(θ , ��)     y5,0(r)     y5,1(r)     

y5,3(r)     

y5,5(r)     y5,4(r)     

y5,2(r)     

Y5,1(θ , �)     

Y5,3(θ , �)     Y5,2(θ , �)     

Y5,4(θ , �)     Y5,5(θ , �)     

Y

Y

Y

Y

Z

Z

Z

Z

Z

X

X

Y

Z

X

X

X

Y

X

y

y

y

x

x

y

x

x

y

x

y

x

Figure 2. Real part of the spherical harmonics θ ϕY ( , )m5, , m = 0, 1, … 5, on the sphere
(left of every pair), and y r( )m5, in the fish-eye (right). We mark the ‘minimal circle’ that

projects from the equator of the sphere.
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meridians. They are complete in  ( )2 2 for the continuum of azimutal angles α ∈ 1. For
each ℓ, we can choose +ℓ2 1 equidistant azimutal angles α π= +m ℓ: 2 (2 1)m , ∣−m ℓ

ℓ , to span
ℓ with the functions

∑

θ ϕ α π θ ϕ

π π θ ϕ

θ ϕ α

= − −

= − ′
+

= −
′=−

′ ′⎜ ⎟⎛
⎝

⎞
⎠

( )

( )

( )

( )

V L L Y

mm

ℓ
d Y

V

( , ) : exp i exp i ( , )

exp
2 i

2 1
( , )

, . (13)

ℓ m m z y ℓ ℓ

m ℓ

ℓ

m ℓ
ℓ

ℓ m

ℓ m

,
1
2 ,

,
1
2 ,

,0

These we call the nShV functions, since they have unit norm under the  ( )2 2 inner
product. In figure 3 we show some functions θ ϕV ( , )ℓ m, over the sphere and their projections
on the monochromatic fish-eye medium through (4), that will be indicated by lower-case
v r( )ℓ m, .

The nShV functions have unit norm but are not orthogonal

 

α α π

=

= − = − ′
+′

α α
′

− −′

⎜ ⎟⎛
⎝

⎞
⎠

( )( )V V Y Y

d
m m

ℓ

, , e

( ) cos
( )

2 1
. (14)

ℓ m ℓ m ℓ ℓ
L

ℓ ℓ

ℓ ℓ
ℓ

m m

ℓ

, , ,
i ( )

,

,

2

m m y
2 2

No pair of nShV functions Ω =−V{ ( )}ℓ m m ℓ
ℓ

, can be orthogonal because in (14),

α α π− =′( )m m
1

2

1

2
would imply ′ − = +m m ℓ 1

2
, but all m’s are integers. The basis is

V6,-4(θ , ��)     V6,0(θ , �)     V6,4(θ , �)     

v6,4(r)     v6,4(r)     v6,0(r)     

Y Y Y

Z Z Z

X

X X

y

x

y

x

y

x

Figure 3. Real part of the normalized Sherman–Volobuyev functions θ ϕV ( , )m6, ,
= −m 4, 0, 4 in (13) on the sphere (top), and their projections on the fish-eye medium

(bottom) with the minimal circle. The full basis is obtained through rotations around the
z-axis by α π= +m ℓ2 (2 1)m , ∣−m ℓ

ℓ .
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complete in ℓ, as one can verify that α α∥ − ∥ >′ddet ( ) 0ℓ ℓ
ℓ

m m, . Hence, one can expand
any monochromatic function  θ ϕ ∈F ( , ) ( )2 2 as

∑θ ϕ θ ϕ= ∼

=−

F F V( , ) ( , ), (15)
m ℓ

ℓ

m ℓ m,

with generally complex coefficients
∼

=−F{ }m m ℓ
ℓ . Yet, because this basis of ℓ is not

orthogonal, the inner product expressed in these coefficients will be nonlocal, i.e., (14) and
(15) lead to

 



∑

∑ π

=

= − ′
+

=

͠

͠

∼

∼

′

′

=−
′

′=−

⎜ ⎟⎛
⎝

⎞
⎠

( )F G F V V G

F
m m

ℓ
G F G

( , ) ,

cos
( )

2 1
:( , ) . (16)

m m ℓ

ℓ

m ℓ m ℓ m m

m m ℓ

ℓ

m

ℓ

m

,

*
, ,

,

*
2

ℓ

2
2

In section 6 we shall see the → ∞ℓ limit of this inner product of fields contracts to a local
inner product of functions over the circle α ∈ 1.

5. The Legendre harmonic bases

The ‘mid’ spherical harmonics θ ϕY ( , )ℓ,0 in (7) are real, independent of ϕ, and proportional
to the Legendre polynomials θP (cos )ℓ . These have two extremal values along the z-axis: a
‘finger’ of value 1 at θ = 0, and a ‘tail’ −( 1)ℓ at θ π= ± . This axis can be rotated and
pointed in any direction of the sphere as shown in figure 4. In the fish-eye medium these
functions project on real wavefields with extremal values on two points: the finger on

ϕr( , ) and the tail on ϕ π′ +r( , ), with ρ′ =rr (2 )2, so the two points are conjugate with
respect to the circle of ‘minimal radius’ projected from the equator θ π= 1

2
, as was noted

in section 2. Figure 4 suggests that the mid harmonics are the most localized wavefields;
this is borne out by the second moments ∫ Ω θ Ω∣ ∣Yd cos ( )ℓ m

2
,

2
2 , which are minimal

for m = 0.
From  θ ϕ ∈Y ( , ) ( )ℓ,0

2 2 we can produce +ℓ2 1 other functions in ℓ by polar

rotations through β π= +m ℓ(2 1)m , ∣−m ℓ
ℓ , whose ‘fingers’ will lie on the upper half-mer-

idian contained in the x–z plane. Since β π∣ ∣ <m
1

2
, all their ‘fingers’ will lie inside the minimal

circle r = 2ρ on the fish-eye plane; while their ‘tails’ will project on their conjugate points
outside. We thus define the Legendre harmonics as

∑

∑

Λ θ ϕ θ ϕ β θ ϕ

β θ ϕ β θ ϕ θ ϕ

Λ θ ϕ Λ θ π ϕ

= =

= + +

= − = − ±

β−

′=−
′ ′

′=
′ ′ ′( )

( )

( ) ( )

Y d Y

d Y d Y Y

( , ) : e ( , ) ( , )

( , ) ( , ) ( , )*

( , ) ( 1) ( , ), (17)

ℓ m
L

ℓ

m ℓ

ℓ

m
ℓ

m ℓ m

ℓ
m ℓ

m

ℓ

m
ℓ

m ℓ m ℓ m

ℓ m
ℓ

ℓ m

,
i

,0 ,0 ,

0,0 ,0

1
,0 , ,

, ,

m y

where we used (6) and (11). On the sphere, all the Λℓ m, ʼs are even under ϕ ϕ↔ − , and thus
their projections on the fish-eye plane under ↔ −y y. They provide therefore a basis only for
even functions θ ϕ θ ϕ= −F F( , ) ( , ) in the +ℓ( 1)-dimensional subspace of ℓ spanned by
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θ ϕ ϕ∝Y mRe ( , ) cosℓ m, . One can verify that the rank of the matrices β∥ ∥′d ( )m
ℓ

m,0 in (17) is
+ℓ 1, and that the Λℓ m, ʼs in the subset ∈ = − − + …m ℓ ℓ ℓ: { , 2, , }ℓ are linearly

independent, so they can serve as a complete sub-basis for even functions.
We still require a second set of ℓ functions to serve as basis for odd functions

θ ϕ θ ϕ= − −F F( , ) ( , ). These can be provided noting from angular momentum theory
that

θ ϕ θ ϕ θ ϕ

π
θ ϕ

= + +

= − +

−( )L Y ℓ ℓ Y Y

ℓ
P

( , ) ( 1) ( , ) ( , )

i
2 1

4
(cos )sin , (18)

x ℓ ℓ ℓ

ℓ

,0
1
2 ,1 , 1

1

where we have used (6). We thus define a second set of ℓ real normalized functions that are
odd in azimuth ϕ on the sphere, and in y on the fish-eye plane, by

Y

Z

X

Y

Z

X

Y

Z

X

Y

Y

Z

Z

X

X

y

x

y

x

y

x

y

x

y

x

Λ4,-4    Λ4,-2    

Λ4,0    

Λ4,4    Λ4,2    

Figure 4. Legendre ‘position’ functions over the sphere (left of each pair) Λ θ ϕ( , )m4, ,
= − −m 4, 2, 0, 2, 4 in (17) which are even in azimuth ϕ; projections on the fish-eye

medium (right of each pair) with the minimal circle. The full sub-basis is obtained by
y-rotations of β π= +m ℓ(2 1)m , ∈m ℓ.
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∑

∑

Λ θ ϕ Λ θ ϕ

θ ϕ θ ϕ

β β θ ϕ

β β θ ϕ θ ϕ

Λ θ ϕ Λ θ π ϕ

′ =
+

−

= −
√

+

= −
√

+

= −
√

+ −

= − ′ − = − ′ ±

β

β

−

−
−

′=−
′ ′ − ′

′=
′ ′ − ′ ′( )

( )

( )

( ) ( )

( ) ( )

( )
ℓ ℓ

L

Y Y

d d Y

d d Y Y

( , ) :
2

( 1)
e ( i) ( , )

i

2
e ( , ) ( , )

i

2
( , )

i

2
( , ) ( , )*

( , ) ( 1) ( , ), (19)

ℓ m
L

x ℓ

L
ℓ ℓ

m ℓ

ℓ

m
ℓ

m m
ℓ

m ℓ m

m

ℓ

m
ℓ

m m
ℓ

m ℓ m ℓ m

ℓ m
ℓ

ℓ m

,
i

,0

i
,1 , 1

,1 , 1 ,

1
,1 , 1 , ,

, ,

m y

m y

which are shown in figure 5. Because on the meridian in the y = 0 plane the functions (19)
have zero values and maximal derivatives, we call them normal derivative Legendre
functions. The subset of Λ ′ℓ m, ʼs with ∈ ′ = − + − + … −m ℓ ℓ ℓ: { 1, 3, , 1}ℓ generate the
ℓ-dimensional subspace of ℓ functions that are odd in azimuth ϕ∝ ′msin . They are linearly
independent and form a complete basis for the subspace.

The +ℓ 1 ‘position’ functions (17), together with the ℓ ‘normal derivative’ functions
(19), provide us with a proper basis of +ℓ2 1 independent, real and normalized vectors on the
sphere, and hence on the fish-eye medium, for the space of monochromatic functions in ℓ.
The locations of the rotated + ′z axes on the sphere and on the fish-eye plane that characterize
both the nShV and the Legendre bases are shown in figure 6. There, the points of the
nShV functions fall on the equatorial and the minimal circle, as do their conjugate points. The

Y

Y

Y

Y

Z

Z

Z

Z

X

X

X

X

y

y

y

y

x

x

x

x

Λ'4,-3    

Λ'4,1    Λ'4,3    

Λ'4,-1    

Figure 5. Legendre ‘normal derivative’ functions over the sphere (left of each pair)
Λ θ ϕ′ ( , )m4, , = − −m 3, 1, 1, 3 in (19) that are odd in azimuth ϕ; projections on the fish-
eye medium (right of each pair) with the minimal circle. The full sub-basis is obtained
by y-rotations of β π= +m ℓ(2 1)m , ∈ ′m ℓ.
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two Legendre sub-bases correspond to alternate points on the upper meridian on the sphere,
and on the x-axis of the fish-eye plane inside the minimal circle.

Turning our attention now to the inner products between the functions in the two
Legendre sub-bases, we note firstly that Λ Λ ′ =′( , ) 0ℓ m ℓ m, , 2 due to parity; but neither subset of
functions is orthogonal. For the ‘position’ functions Λℓ m, , their inner products are

 
Λ Λ

β β β β

=

= − = −′ ′

β β
′

− −′( )
( )( ) ( )

( ) ( )Y Y

d P

, , e

cos , (20)

ℓ m ℓ m ℓ
L

ℓ

ℓ
m m ℓ m m

, , ,0
i

,0

0,0

m m y
2

2

where we recall that the Legendre polynomial βP (cos )ℓ contains powers ν of βcos ,
ν ∈ − …ℓ ℓ{ , 2, , 1 or 0}, or equivalently a linear combination of νβcos for the same range
of ν. Equation (20) is valid for ′∣−m m, ℓ

ℓ , but is needed only for ′ ∈m m, ℓ,
The ‘normal derivative’ functions Λ ′ℓ m, exhibit the inner products

 Λ Λ

β β β β

β β β β

′ ′ = + +

= − + −

= − = −

′ ′

′ ′

β β
′

−
−

−
−

−

− −

′

( ) ( )

( )
( ) ( )

( ) ( )

( ) ( ) ( )Y Y Y Y

d d

ℓ
P Q

, e , e

1
cos : cos . (21)

ℓ m ℓ m
L

ℓ ℓ
L

ℓ ℓ

ℓ
m m

ℓ
m m

ℓ m m ℓ m m

, ,
1
2

i
,1 , 1

i
,1 , 1

1,1 1, 1

1
(1,1)

1

m y m y
2 2

The polynomial β−Q (cos )ℓ 1 is of degree ν in βcos , or equivalently a sum of terms νβcos ,
where ν ∈ − − …ℓ ℓ{ 1, 3, , 0 or 1}. As before (21), is valid for ′∣−m m, ℓ

ℓ but is needed only
for ′ ∈ ′m m, ℓ .

Non-orthogonal bases again involve non-local measures for the expansion coefficients in
ℓ, as was the case for the nShV basis in (16). Functions on the sphere that are linear
combinations of both even and odd parts

 
∑ ∑θ ϕ Λ θ ϕ Λ θ ϕ= + ′ ′

′∈ ∈

F F F( , ) ( , ) ( , ), (22)
m

m ℓ m

m
m ℓ m, ,

ℓ ℓ

will exhibit nonlocal inner products determined by (20) and (21) to be


 



∑ ∑π π= − ′
+

+ ′ − ′
+

′

=

′
′′∈ ′∈

− ′⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠F G F P

m m

ℓ
G F Q

m m

ℓ
G

F G

( , ) cos
( )

2 1
* cos

( )

2 1

:( , ) . (23)
m m

m ℓ m

m m
m ℓ m

,

*

,

1

ℓ ℓ

ℓ

2

In the following section we will let → ∞ℓ and contract the ‘momentum’ and ‘position’ bases,
and their inner products, to those of the homogeneous Helmholtz medium, regaining the
known bases and their inner products [2].

6. Contraction of the fish-eye to the homogeneous Helmholtz medium

The Lie algebra so(3) of rotations that served to characterize the function bases on the sphere
and the projected wavefields on the two-dimensional fish-eye medium, can be contracted to
the Euclidean Lie algebra iso(2) that generates rotations and translations on the plane [18].
We apply this contraction to the spherical harmonics and to the new bases that we built in the
last two sections.
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6.1. The contraction parameter and the wavenumber

When the radius ρ of the sphere in figure 1 grows without bound, its symmetry group
contracts from so(3) to iso(2). In the limit ρ → ∞ the refractive index (2) becomes constant,

=n nr( ) o, so the Maxwell fish-eye becomes a homogeneous medium where we should ask its
wavefields to retain a definite wavenumber. Only a correspondingly growing representation
index ρ∝ℓ will prevent the projected wavefields from becoming constant. The
nShV functions should retain the same wavelength λ on the sphere where it is tangent to the
fish-eye plane. Since πρ2 is the perimeter of any maximal circle, θ ϕ ϕ∝Y ℓ( , ) exp iℓ ℓ, will
accommodate around it ℓ wavelengths λ πρ= ℓ2 . The contraction so(3) → iso(2) when
ρ → ∞ℓ, will thus be determined by the ratio

ρ π λ ρ= = =k ℓ ℓ k2 , , (24)

which is the wavenumber of the wavefield in the homogeneous medium no. The polar angle θ
in the growing sphere will map onto a finite radius r on the fish-eye plane (1) when

θ ρ ρ θ ρ= + → ≈( )r r rsin 4 4 . (25)2 2

The limit ρ → ∞ of the fish-eye spherical harmonic basis, =−y r{ ( )}ℓ m m ℓ
ℓ

, in (8), is given

by (12). The dependence on ρ√ is eliminated renormalizing by ρ√1 the functions under
contraction. One then obtains the Bessel-multipole basis of wavefields

μ
ρ

π

=
√

= −

ρ

ρ

ϕ

→∞

=

−∞
∞

y

k
J kr m

r r( ) : lim
1

( )

( 1)
2

( )e , , (26)

m

ℓ k

ℓ m

m
m

m

,

i

that form a well-known denumerable basis for the space of (non-exponential) solutions in a
Helmholtz medium.

Under the contraction, rotations around the z-axis of the sphere remain as rotations of the
x–y fish-eye plane around its center. On the other hand rotations around the x- and y- axes,
since ρ≈ → ∞z , become translations in the y- and x-directions of the fish-eye plane,
generated by

Figure 6. Left: the rotated +z axes of the nShV basis of ‘momentum’ functionsVℓ m, over
the sphere (marked •) lie around the equator; those of the Legendre ‘position’ and
‘normal derivative’ functions Λℓ m, (O) and Λ ′ℓ m, (⊖), are in the upper half-meridian in
the y = 0 plane. Right: their stereographic projections on the fish-eye plane for the
nShV basis are points on the minimal circle, while for the two Legendre sub-bases are
alternating points on the x-axis inside the minimal circle .
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ρ

ρ

= − ∂ − ∂ → ∂

= − ∂ − ∂ → − ∂
( )
( )

L y z

L z x

i i ,

i i , (27)

x z y y

y x z x

and the finite displacement operators become →β− − ∂e eL xi m y m x, for finite β ρ≈xm m , so
β ρ∝ 1 . The limit of the Casimir operator is ρ ρ= + → ∂ + ∂ =L ℓ ℓ k( 1)1 ( ) 1x y

2 2 2 2 2 2 ;
factoring out ρ2, this determines the Helmholtz equation for fields of wavenumber k.

6.2. Contraction of the nShV basis

As the dimension of the space ℓ of fish-eye monochromatic wavefields increases, the
azimuth angles of the members of the nShV basis, α π= +m ℓ2 (2 1)m , ∣−m ℓ

ℓ , as defined in
(13), become dense on the α-circle, separated by a vanishing Δα π= + →ℓ2 (2 1) 0. Hence
α α≡ m on the circle will take the place of m as a label for the limit fields.

It is to be expected that the nShV functions θ ϕV ( , )ℓ m, will contract to plane waves;
indeed, the ρ → ∞ℓ, limit (24) and (25) of the nShV basis (13) is given by the growing sum

∑ρ ϕ π ρ ϕ= α

′=−

− ′
′ ′⎜ ⎟⎛

⎝
⎞
⎠V r d Y r( , ) e

1

2
( , ), (28)ℓ m

m ℓ

ℓ
m

m ℓ
ℓ

ℓ m,
i

, ,
m

∑
π

ρ
π

→ − ′ ′
α

ϕ

′=−∞

∞ − ′
′

ℓ

k
J kr( 1)

e

( ) 2
( )e , (29)

m

m

m

m
m

i

1 4
i

m

∑
π

ρ
π

= ′
ϕ α π

′=−∞

∞
′ − +⎜ ⎟⎛

⎝
⎞
⎠

k
J kr

1

2
e ( ). (30)

m

m
m

1 4
i ( )

In (29) we used (11) for π π=→∞ ′
−d ℓlim ( ) ( )ℓ m ℓ

ℓ
,

1

2
1 4, which is valid when ∣ ′∣ ≪m ℓ, while for

the ′Yℓ m, ʼs we used (12), noting that since the Bessel functions ′J kr( )m have m′-fold zeros at
r = 0 and are small for < ′kr m , large m′ʼs will yield vanishing contributions to finite regions
of the fish-eye plane. We thus write the Helmholtz wavefields renormalizing by ρ−1 4 and use
the Bessel generating function to obtain

ϕ ρ ρ ϕ

π
π

ϕ α

=

= −

α
ρ

ρ

→∞

=
−v r V r

k
kr

( , ) : lim ( , )

( )

2
exp(i sin( )). (31)

k

ℓ k

ℓ m,
1 4

,

1 4

These are plane waves of wavenumber k whose wavefronts lie in the ϕ α= direction.
Another look at equation (30) reveals the expansion of plane waves into multipole
wavefields (26).

The expansion of a generic Helmholtz wavefield f r( ) in terms of the circle of plane
waves (31) is the limit of (15) when ρ → ∞; the sum over αm, ∣−m ℓ

ℓ , with
Δα π= + →ℓ2 (2 1) 0 becomes a Riemann integral over the α-circle in the same way that
finite Fourier transforms limit to Fourier series on the circle, i.e.

∫∑
Δα

Δα α α= →∼ ∼
π

π
ϕ α

=− −
−f f v fr r( )

1
( ) d ( ) e . (32)

m ℓ

ℓ

m ℓ m
kr

,
i sin( )

The inner product between two functions F G, on the sphere in (16) entailed, for finite ρ, a
non-local inner product between their coefficients

∼ ∼
′F G,m m . In the ρ → ∞ℓ, limit, this non-

local kernel becomes a Dirac δ
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π
π ρ

δ α α− ′
+

= − ′
ρ

ρ

→∞

=
⎜ ⎟⎛
⎝

⎞
⎠ ( )m m

ℓ k
lim cos

( )

2 1

1
, (33)

ℓ k ℓ2

so the inner product of two Helmholtz wavefields f g, in terms of the coefficient functions
α α∼∼

f g( ), ( ) in (32), becomes local:

∫ α α α= ∼∼
π

π

◦ −
f g f g( , ) : d ( )* ( ). (34)

To prove (33), note that for ≠ ′m m , α α− <′cos( ) 1m m , so its growing powers tend to zero;
on the other hand the sum → integral of α α→m in (33) is asymptotically π√ ℓ1 ( ) [19,
equation (3.621.3)]. The powers the two factors of ρ1 4 in the renormalized functions (30) and
the factor of ρ−1 2 in (33) cancel.

The basis of plane waves, α α∈v r{ ( )}k, 1 in (31), is the basis of Euclidean momentum in
the Helmholtz medium [14]; its pre-contraction, the nShV basis on the sphere

θ ϕ =−V{ ( , )}ℓ m m ℓ
ℓ

, in (13), can be seen as the natural momentum basis on the sphere, as was
understood by Sherman and Volobuyev [3, 4], and its projection in the monochromatic
Maxwell fish-eye as well.

6.3. Contraction in the legendre basis

The two Legendre sub-bases, Λ θ ϕ( , )ℓ m, and Λ θ ϕ′ ( , )ℓ m, in (17) and (19), point their ‘fingers’
at angles β π= +m ℓ(2 1)m , and project these maxima on points xm on the x-axis of
the fish-eye plane. As we saw, for ∈m ℓ, the former are the ℓ sub-basis of even
functions, and for ∈ ′m ℓ of odd functions, in azimuth ϕ ϕ↔ − , and in ↔ −y y on the fish-
eye plane.

In the ρ → ∞ℓ, limit (24), the set of points xm, ∈m ℓ or ′ℓ , will project on the infinite
set of equally-spaced points

ρ β ρβ λ= → = =x x m2 tan
1

2

1

4
. (35)m m m m

The contraction of the position Legendre basis can be found by considering first Λℓ,0, i.e.
β = 00 , whose Legendre ‘finger’ points at the origin of the fish-eye r-plane, =x 00 . There,

δ=′ ′d (0)m
ℓ

m,0 ,0 reduces the sum in (17) to a single term θ ϕY ( , )ℓ,0 , where we use (12) for
finite ρθ=r . Its limit is

Λ ρ ϕ ρ
π

=
ρ

ρ

→∞

=
r

k
J krlim ( , )

2
( ). (36)

ℓ k

ℓ,0 0

Since rotations around the y-axis have contracted to translations in the x direction, all other
Λℓ m, ʼs will be xm-translated versions of (36) for ∈m ℓ. These points are equidistant by

half-wavelengths λ1

2
, each the center of a displaced monopole field.

On the Helmholtz plane, and renormalized by ρ√1 , the contraction limit of the
Legendre position functions is

λ
ρ

Λ ρ ϕ
π

=
√

= −
ρ

ρ

→∞

=
( )r

k
J kr r x( ): lim

1
( , )

2
, (37)k m

ℓ k

ℓ m m, , 0

where ∣ − ∣ = √ − +x x yr x [( ) ]m m
2 2 and π=kx mm

1

4
, for all even ∈m even. Since the J0ʼs

in (37) are known to be the narrowest Helmholtz wavefields [2], with the role of position
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functions forming a basis for fields f x y( , ) that are even in ↔ −y y. This identification thus
extends back to the Legendre basis on the pre-contracted sphere.

The ρ → ∞ℓ, limit of the normal derivative functions, Λ θ ϕ′ ( , )ℓ m, in (19), when ρ → ∞,
θ ρ= →r 0 and β ρ= →x 0m m , can be found with the y-derivative of (27) on (36) as
function of = x yr ( , ), namely

Λ θ ϕ ρ
π

ρ
π

′ = ∂
∂

=
−

−ρ

ρ

→∞

=
− ∂ ( )

k y
J kr

k J k
y

r x

r x
lim ( , ) i e ( ) i . (38)
ℓ k

ℓ m
x m

m
, 0

1
m x

We thus complement the set of functions (37) with

λ
ρ

Λ θ ϕ
π

′ = −
√

′ =
−

−ρ

ρ

→∞

= ( )k J k
yr

r x

r x
( ) : lim

i
( , ) , (39)k m

ℓ k

ℓ m
m

m
, ,

1

for π=kx mm
1

4
, for all odd ∈m odd. We note that ϕ∣ − ∣ =y r x sinm m, where ϕm is the polar

angle in the plane referred to the point xm. The Helmholtz limit wavefunctions (37) and (39)
are shown in figure 7 for m = 0; all others are only x-translated versions of these two for

∈m even or odd.
Generic Helmholtz wavefields can be written in terms of the position and normal deri-

vative bases (37) and (39) as

 
∑ ∑λ λ= + ′ ′
∈ ∈

f f fr r r( ) ( ) ( ). (40)
m

m k m

m
m k m, ,

even odd

The inner product between two of these fields f g, , given in terms of their coefficients
′ ′′ ′f f g g, , ,m m m m , is the limit of the finite case whose non-local inner product was (23). Now,

using (12) and

ρ ρ+ = +

=

ρ

ρ

→∞

=
− − +( )d x d x J kx J kx

m

kx
J kx

lim ( ) ( ) ( ) ( )

2
( ), (41)

ℓ k

m
ℓ

m
ℓ

m m

m

,1 , 1 1 1

for m = 1, we find that the inner product remains non-local in the coefficients at the discrete
positions xm

Figure 7. Left: the limit of the Legendre ‘position’ functions are the J0-Bessel functions
λ r( )k m, in (37) centered on xm, ∈m even. Right: the limit of the ‘normal derivative’
Legendre functions λ ′ r( )k m, in (39), which are centered on xm, ∈m odd.
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∑ ∑π
π

π
= ′ − + ′

′ −

′ −
′′ ′

′∈ ′∈
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⎝

⎞
⎠

( )
f g f J m m g f

J m m

m m
g( , ) :

1

2
( ) *

( )

( )
. (42)

m m
m m

m m
m m

,

* 0

,

1
1
2

1
2even odd

This can be compared with the same nonlocal inner product that appears in [2, 14, 15]; it was
built in [14] and shown to be the only iso(2)-invariant sesquilinear inner product, i.e., whose
‘measurement line’ of xmʼs can be rotated and translated without changing its value.

7. Conclusions

Beside the natural, orthonormal basis of spherical harmonics for functions on the sphere,

=−Y{ }ℓ m m ℓ
ℓ

, with fixed ℓ, we determined a normalized finite sub-basis of that introduced by
Sherman and Volubuyev [3, 4] to stand for the +ℓ2 1 states of momentum, which are rotated
copies of Yℓ ℓ, . We also proposed a new basis, associated to the name of Legendre, which is
composed of +ℓ2 1 interdigitated functions of position and normal derivative that are
rotated versions of Yℓ,0 and of + −Y Yℓ ℓ,1 , 1 respectively. Finally, when the sphere contracts to a
plane, we matched the limits of these bases with previously known bases for Helmholtz
monochromatic wavefields in the appropriate Hilbert space. This is in analogy to other
studies of discrete and finite Hamiltonian systems that contract to continuous quadratic
quantum systems in the limit when the number and density of points grow without bound
[15, 20–23].

There is a fundamental difference though: whereas in those finite systems the bases were
determined as eigenfunctions of a set of commuting operators in a Lie algebra, here they were
determined through finite elements of a group acting on the above-quoted fiducial functions.
Whereas the eigenfunctions form orthogonal bases, the function sets we considered here do
not, yet they lie within a definite Hilbert- and group-theoretic structure which contracts to
Euclidean and conformal optics [7, appendix B] and which is applicable both to the geometric
and scalar wave models.

One area of interest in exploring finite systems that are pre-contracted versions of a
continuous one, is to ensure that a succession of finite approximations, harboring the sym-
metries of the continuous limit, will properly converge to it. Another wide area pertains phase
space, which is well understood in classical mechanics and geometric optics, and also in
quantum mechanics via the Wigner function associated to the Heisenberg–Weyl group that
hardly needs reference; a finite periodic version, the Wigner function on a discrete torus,
derives directly from that.

For functions on the sphere, a phase space and Wigner function were defined on the
original Sherman–Volobuyev basis in [24]. Moreover, for finite systems associated to the
rotation algebra so(3), a spherical phase space and the corresponding Wigner function were
introduced in [25], which may be best applicable here. On the other hand, for continuous
Euclidean-invariant systems such as that obeying the Helmholtz equation, several phase
spaces and Wigner functions have been analyzed by various authors [26–29], one of which
has been shown to be particularly useful for electromagnetic optics [30]. In each of those
representations, the bases introduced here as multipole, momentum and Legendre functions,
are expected to have definite shape signatures, as coherent states do under the traditional
Wigner function, which should take into account the non-locality of their inner products [31].
We leave this subject for further study.
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