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The finite oscillator model of 2j+1 points has the dynamical algebra u(2), consisting of
position, momentum and mode number. It is a paradigm of finite quantum mechanics
where a sequence of finite unitary models contract to the well-known continuum theory.
We examine its contraction as the number and density of points increase. This is done on
the level of the dynamical algebra, of the Schrödinger difference equation, the (Kravchuk)
wave functions, and the Fourier–Kravchuk transformation between position and momen-
tum representations.
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1. Introduction

Contractions were introduced in physics by Inönü and Wigner1 as a mathematical

expression of the correspondence principle. This principle tells us that, whenever a

new physical theory generalizes an old one, there should exist a well-defined limit in

which the results of the old theory are recovered. Typical examples of contractions

that are important to physics are the c → ∞ nonrelativistic limit of relativistic

theories, the ~→ 0 classical limit of quantum theories, and the limit R→∞ of the

de Sitter radius to Poincaré relativity. In this and a following paper we study the

contraction of a discrete, finite one-dimensional oscillator model2–5 and a radial

oscillator6 model to their well-known “continuous” quantum mechanical limits.

New models must include a parameter in whose limit (zero or infinity) they

reproduce the original (“well-known”) model; on the other hand, the inverse route

to a “precontracted” theory may not be unique. This has been the case of discrete
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quantum mechanics, where several models have been proposed which contract to

the common Schrödinger quantum theory; these have been generally based on cyclic

subgroups of the Heisenberg–Weyl group and related constructs (see e.g. Ref. 7).

Our finite oscillator model3 uses the well-known formalism of angular momen-

tum, but proposes a new physical interpretation for the generators of the algebra

u(2) = u(1) ⊕ su(2) = so(2) ⊕ so(3) as position, momentum and energy, within

a definite unitary irreducible representation j ∈
{
0, 1

2 , 1, . . .
}
, to describe systems

with 2j + 1 observable values. Because the u(2) algebra is compact, the spectra

of all operators will be intrinsically discrete and finite; coherent states exist,4 and

a covariant Wigner quasiprobability distribution function is defined.8 A notorious

difference between the previous models and the present one (which was originally

introduced for signal processing by optical means3), is that in the former the posi-

tion observable is cyclic, so the two points at the ends of the basic interval are

actually first neighbors, while here the points ±j are properly the endpoints of a

finite interval.

In Sec. 2 we recall the essentials of the u(2) finite oscillator model: its Lie

algebra realization, the position and mode (energy) bases, the wave functions and

their Schrödinger difference equation, and the oscillator evolution Green function.

The contraction of u(2) to the oscillator algebra is addressed in Sec. 3. In Sec. 4 we

contract the finite oscillator (Kravchuk) functions to the Hermite functions of the

quantum oscillator. This derivation is new in the sense that it does not rely on the

limit of the recursion relations, but proceeds directly from function properties; the

2F1-hypergeometric representation is not suited for this limit, but a recent relation

between Wigner little-d and 3F2-functions9 permits the direct proof. In Sec. 5 we

show that the finite oscillator Green functions (finite Fourier–Kravchuk transforms)

contract to the ordinary Fourier transform. The previous three contractions corre-

spond to three limits of the little-d Wigner functions djm,m′
(

1
2π
)

when one (j), two

(j,m), or three (j,m,m′) indices grow to infinity. Some concluding comments are

appended in Sec. 6.

2. One-Dimensional Finite Oscillator

The observables of an oscillator are position, momentum and energy. Their values

are the points of the spectrum of three operators, Q, P and H, that should

close into a Lie algebra. The time evolution is given by the Hamilton equations

[H,Q] = −iP and [H,P ] = iQ, while the third commutator, [Q,P ], is left

undetermined.10,11 The ordinary quantum oscillator is obtained when this com-

mutator is [Q,P ] = i~1̂ (where 1̂ is the identity operator), so one has the oscillator

dynamical Lie algebra H4 = span{H,Q,P, 1̂}. The finite oscillator model on the

other hand,2,3,8 is characterized through the (non-standard) commutator [Q,P ] =

i(H − j− 1
2 ) = iJ3, and thus endowed with the dynamical algebra u(2), in the uni-

tary irreducible representation space labeled by j = 1
2N , of fixed dimension N + 1,

N ∈ {0, 1, 2, . . .}.
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2.1. The finite oscillator Lie algebra

The Lie algebra u(2) is formed by identifying the three commonly designated gen-

erators of su(2) = span{J1, J2, J3}, with the observables of

position Q = J1 , spectrum: q|j−j ,

momentum P = −J2 , p|j−j ,

mode number H − 1
2 = J3 +EJ , n|N0 ,

(1)

where the operator EJ generates the center u(1)c ⊂ u(2) (commuting with Jk), and

takes the value j1̂ in the representation space j. The u(2) commutation relations are

[J1, J2] = iJ3 , [J2, J3] = iJ1 , [J3, J1] = iJ2 , [EJ , Jk] = 0 . (2)

[The role of EJ is analogous to that of the total-number-of-quanta operator in

the u(2) symmetry algebra of the two-dimensional quantum oscillator, where u(1)c
is conjugate to su(2) 12 within its boson, or metaplectic, representation; but note

carefully the physical difference between the symmetry algebra u(2) of the ordinary

two-dimensional quantum oscillator, and the dynamical algebra u(2) of our one-

dimensional finite oscillator.] The su(2) Casimir operator is J2 = J2
1 + J2

2 + J2
3 ,

so the central operator may be written as EJ = − 1
2 +

(
J2 + 1

4

)1/2
[with abuse of

notation, because such an “operator” does not belong to the enveloping algebra

of su(2)].

It is well known13,14 that in any unitary irreducible representation j of u(2), we

can define the eigenbasis of J3, |j,m〉3, m|
j
−j , with its raising and lowering operators

J± = J1 ± J2, as follows:

EJ |j,m〉3 = j|j,m〉
3
, J2|j,m〉

3
= j(j + 1)|j,m〉

3
,

J3|j,m〉3 = m|j,m〉
3
, J±|j,m〉3 = αj(±m)|j,m〉

3
,

(3)

αj(m) :=
√

(j +m+ 1)(j −m) = αj(−m− 1) . (4)

The basis {|j,m〉
3
}jm=−j is orthonormal and complete in the representation space

of dimension 2j + 1. In this paper we shall work both with the spectrum of the

operator J3, namely m|j−j, and with the mode number n = j +m, or energy n+ 1
2

of the oscillator.

2.2. Eigenbases and Kravchuk wave functions

Any element in the su(2) algebra defines an eigenbasis similar to (3)–(4). In particu-

lar, we are interested in the “position” eigenbasis of J1, which we label {|j, q〉
1
}jq=−j ,

and in the interbasis overlap functions defined by

f jm(q) :=
1
〈j, q|j,m〉

3
=
(
f jq (m)

)∗
. (5)

We interpret these functions to be the finite oscillator wave functions of mode

number n = j + m, at the set of 2j + 1 discrete positions −j ≤ q ≤ j. And it is
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easy to verify that overlap functions f jm(q) themselves also form a canonical basis

in the (2j + 1)-dimensional complex space,

j∑
m=−j

(
f jm(q)

)∗
f jm(q′) = δq,q′ ,

j∑
q=−j

(
f jm(q)

)∗
f jm′(q) = δm,m′ . (6)

The relation between the wave functions in (5) and those used in previous works3–5

is f jm(q) = Φ
(2j)
j+m(q), or Φ

(N)
n (q) = f

1
2N

n− 1
2N

(q). In Fig. 1 we show these for the lowest,

Fig. 1. Finite one-dimensional oscillator Kravchuk functions fjm(q) with j = 32 (2j+1 = 65 points
along the q-axis, joined by straight lines for visibility), for n = j+m = 0, 1, 2, . . . , 32, . . . , 62, 63, 64,
from bottom to top.
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middle and highest states (cf. Refs. 4 and 5). The ground state (n = 0) is the square

root of the binomial distribution; the top state (n = N) is the previous one with

alternating signs between neighboring q’s; the resemblance of the lower states to

the quantum harmonic oscillator wave functions is evident. In what follows we shall

continue to use the indices j and m because they are handier than N = 2j and

n = j +m for the purpose of taking limits.

We can establish a useful relation between the previous overlap functions and

the Wigner “little-d” functions,

djm,m′(θ) :=
3
〈j,m|e−iθJ2|j,m′〉

3
= djm′,m(−θ) (7)

through noting that

e−i
1
2πJ2J3e

i 1
2πJ2 = J1 ⇒ e−i

1
2πJ2 : |j,m〉

3
= |j,m〉

1
. (8)

Hence, from (5),

f jm(q) =
3
〈j, q|e+iπ2 J2 |j,m〉

3
= djq,m

(
− 1

2
π

)
= djm,q

(
1

2
π

)

=
(−1)j+m

2j

√(
2j

j +m

)(
2j

j + q

)
Kj+m

(
j + q;

1

2
, 2j

)
, (9)

where the last expression uses the symmetric Kravchuk polynomial Kn(x; p,N),15

of degree n in x, whose general definition (for 0 ≤ p < 1) is

Kn(x; p,N) = 2F1(−n,−x;−N ; 1/p) . (10)

2.3. Schrödinger difference equation

For fixed N , the N + 1 Kravchuk polynomials (10) are orthonormal with respect

to the binomial distribution
(
N
x

)
. They satisfy no differential equation, but a dif-

ference one which relates the values of the polynomial on three real points (not

necessarily integer), separated by one unit.16 From that difference equation follows,

through (9), a difference equation for the finite oscillator wave functions f jm(q),

which is of the Schrödinger form,

Hj
(q)f jm(q) =

(
n+

1

2

)
f jm(q) , n = 0, 1, . . . , 2j , (11)

with the Hamiltonian difference operator

Hj
(q) = −1

2
[αj(q)e−∂q − (2j + 1) + αj(−q)e∂q ] , (12)

written in terms of αj(q) given by (4), and the unit-shift operators ea∂qf (q) =

f(q + a), for a = ±1.

We should note that the difference Hamiltonian (12) does not separate into

a sum of “kinetic” plus “potential enegy” terms. It would have been difficult to

“guess” the discrete form of the finite oscillator Hamiltonian out of a Schrödinger
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form 1
2 (∂2

q + q2). Other discrete oscillator analogs have been proposed, such as that

based on the Harper equation,17 which applies to a finite set of points on a circle,

with the second difference operator plus a cosine function in the angular position.

Since Harper’s Hamiltonian does not have a linear spectrum, this system cannot

harbor truly coherent states, however.

2.4. Fourier Kravchuk transforms

Rotations around the 3-axis bring the eigenbasis of J1 (position) to the eigenbasis

of J2 (−momentum):

e−i
1
2πJ3J1e

i 1
2πJ3 = J2 ⇒ e−i

1
2πJ3 : |j,m〉1 = |j,m〉2 , (13)

and hence the overlap between the two eigenbases is

f̃ jm(p) := 2〈j, p|j,m〉3 = 1〈j, p|e
i 1
2πJ3 |j,m〉3 = ei

1
2πm f jm(p) . (14)

These are also the coordinates of the mode |j,m〉
3

in (finite) momentum space

p ∈ {−j,−j + 1, . . . , j}, i.e. the finite oscillator wave functions in momentum

representation.

The fractional integral Fourier transform18 represents rotations of phase space.

In our context, its finite counterpart is the Fourier–Kravchuk transform introduced

in Ref. 3: a rotation of the J1–J2 plane by 1
2π is produced by the Fourier–Kravchuk

operator and kernel

K := e−i
1
2π(J3+EJ) , Kj

q,q′ :=
1
〈j, q|K|j, q′〉

1
. (15)

A closed form for the kernel can be found through an addition theorem for Wigner

d-functions,14

Kj
q,q′ =

j∑
m=−j

djq,m

(
− 1

2
π

)
e−i

1
2πmdjm,q′

(
1

2
π

)
= ei

1
2π(q′−q)djq,q′

(
1

2
π

)
. (16)

The Fourier–Kravchuk transform K is actually distinct, from the common discrete

Fourier transform matrix19 of elements (2j + 1)−1/2 exp[2πiqq′/(2j + 1)]. Both are

unitary and step-4 idempotent: K4 = 1̂. Yet, we consider the Fourier–Kravchuk

kernel transform to be the appropriate discrete analog of the Fourier integral trans-

form, because it stems from the exponential of the Schrödinger Hamiltonian (12),

so it multiplies the nth finite oscillator mode eigenstate by (−i)n, which leads to

the existence of proper coherent states.4,20 (Cf. Ref. 7.)

3. Contraction of the Algebra

Many authors, first among them Wigner and Talman,21 have considered the con-

traction of su(2) to the one-dimensional Heisenberg–Weyl algebra of three genera-

tors (indicated by a hat, and including the unit 1̂,) HW1 = span{Q̂, P̂ , 1̂}, for ~ = 1.

Here, all four generators of the dynamical algebra u(2) are subject to contraction

to the oscillator algebra H4 = {Ĥ, Q̂, P̂ , 1̂} ⊃ HW1 = {Q̂, P̂ , 1̂}.13
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We perform the following change of basis for the four generators of u(2) =

span{Jk, EJ} in (2), within the irrep j,
Q(j)

P (j)

H(j)

1̂

 =


j−1/2 0 0 0

0 j−1/2 0 0

0 0 1 1 + 1/2j

0 0 0 j−1



J1

J2

J3

EJ

 , (17)

Then, the nonzero commutators for new generators are:[
H(j), Q(j)

]
= iP (j) ,[

H(j), P (j)
]

= −iQ(j) ,[
Q(j), P (j)

]
= i1̂ + ij−1H(j) .

(18)

In the limit j →∞, the commutation relations (18) become those of H4,[
H(∞), Q(∞)

]
= iP (∞) ,[

H(∞), P (∞)
]

= −iQ(∞) ,[
Q(∞), P (∞)

]
= i1̂ .

(19)

The limit form of H(j) can be found from the identifications (1) and the value

of the Casimir operator J2,

j(j + 1) = j
(
Q(j)2 + P (j)2

)
+

[
H(j) −

(
j +

1

2

)
E(j)

]2

⇒ H(∞)

=
1

2

(
P (∞)2 +Q(∞)2

)
. (20)

The point to note is that while the four independent generators of the dynamical

algebra u(2) of the finite oscillator contract by (17) to the full oscillator algebra

H4, only in the limit does the Hamiltonian generator acquire its standard form as

a quadratic function of the Heisenberg–Weyl generators.

In the representation space j, the rescaled operators (17) will act on functions

F (ξ) := f(q) = 1〈j, q|f〉 of position ξ := q/
√
j, through shift operators by 1/

√
j

[cf. Eqs. (3)–(4)] in the following way

Q(j)F (ξ) =
1√
j
Qf(q) =

q√
j
f(q) = ξF (ξ) , (21)

P (j)F (ξ) = − i

2
√
j

[
αj
(
−
√
jξ
)
F

(
ξ +

1√
j

)
− αj

(√
jξ
)
F

(
ξ − 1√

j

)]
, (22)

H(j)F (ξ) = − 1

2j

[
αj
(
−
√
jξ
)
F

(
ξ +

1√
j

)
+ αj

(√
jξ
)
F

(
ξ − 1√

j

)]
. (23)

As j →∞ and ξ remains finite, and if we assume that the finite-dimensional Hilbert

spaces of functions F (ξ) converge in an appropriate sense22 to that of square-

integrable functions, and moreover that we can expand these functions to three
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terms as F (ξ+ ε) = F (ξ)+ εF ′(ξ)+ 1
2ε

2F ′′(ξ)+ · · · , then the limit of (22) proceeds

through

lim
j→∞

P (j)F (ξ) = − lim
j→∞

i
√
j

2

√
1− ξ2 − 1

j

[
F

(
ξ +

1√
j

)
− F

(
ξ +

1√
j

)]

= −i ∂
∂ξ

F (ξ) . (24)

In the limit one obtains thus the standard realization of the momentum operator

in the position representation. Done similarly for H(j) in (12), one recovers the

quantum harmonic oscillator Schrödinger equation.

4. Contraction of the Finite Oscillator Wave Functions

The energy wave functions of the finite oscillator are solutions to the Schrödinger

difference equation, (11)–(12), so the contraction of the u(2) algebra performed in

the previous section should in principle imply the j → ∞ limit of the Kravchuk

functions (9) to the well-known Hermite wave functions of the ordinary quantum

oscillator. Indeed, the original argument15 for the contraction of Kravchuk to Her-

mite polynomials was phrased in terms of the limit of the point orthogonality mea-

sures: the binomial distribution becomes the Gaussian function when the number of

points N grows while their separation decreases by N−1/2. But (to our knowledge)

the limit of the functions has not yet been proven directly. This may be due to

the fact that the usual representation of Kravchuk polynomials in terms of Gauss

hypergeometric functions, Eq. (10), is ineligible to serve in this limit.

We now prove directly that the Kravchuk functions f jm(q) in (9), for j →∞ and

n = m+ j kept finite (so m→ −∞), contract to the quantum harmonic oscillator

wave functions Ψn(ξ). Instead of the 2F1 functions, we use an expression of Ref. 9

for the d-functions in terms of hypergeometric 3F2-functions (for q integer),

f jn−j(q) =
(−1)

n
2 +q

√
πj!

√
(j + q)!(j − q)!

×



√
Γ
(
n+1

2

)
Γ
(
j − n−1

2

)
Γ
(
n
2 + 1

)
Γ
(
j − n

2 + 1
) 3F2


−q, q, n+ 1

2

1

2
, j + 1

∣∣∣∣∣∣∣∣ 1
 , n even ,

2iq

j + 1

√
Γ
(
n
2 + 1

)
Γ
(
j − n

2 + 1
)

Γ
(
n+1

2

)
Γ
(
j − n−1

2

) 3F2


−q, q, n

2
+ 1

3

2
, j + 2

∣∣∣∣∣∣∣∣ 1
 , n odd .

(25)
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The contraction limit j → ∞ with the mode number n = j + m fixed and finite,

and q =
√
jξ, so that the points ξ are integers divided by

√
j, is

lim
j→∞

(−1)q j
1
4 f jn(q)

=
(−2)n/2√√

πn!
eξ

2


Γ
(
n+1

2

)
Γ
(

1
2

) 1F1

(
n+ 1

2
;
1

2
;−ξ2

)
, n even ,

2iξ
Γ
(
n
2 + 1

)
Γ
(

1
2

) 1F1

(
n

2
+ 1;

3

2
;−ξ2

)
, n odd .

(26)

Now, using now the relation between two confluent hypergeometric functions

1F1(α; γ, z) = ez 1F1(γ − α; γ,−z), and comparing with a standard expression for

Hermite polynomials in Ref. 23, when q =
√
jξ, we obtain

lim
j→∞

(−1)q j
1
4 f jn−j(q) = lim

j→∞
(−1)n+jj

1
4 djn−j,q

(
1

2
π

)
=

e−ξ
2/2√√
π2nn!

Hn(ξ) =: Ψn(ξ) . (27)

The Ψn(ξ), n|∞0 , ξ ∈ <, are of course the normalized wave functions of the one-

dimensional quantum oscillator.

5. Contraction of the Fourier Kravchuk Transform Kernel

When j → ∞, we expect the Fourier–Kravchuk transform summation kernel (16)

to become the ordinary Fourier transform integral kernel.5

To see that this is indeed the case, we can use the previous result (27) and a par-

ticular case of Mehler’s formula for Hermite polynomials,23 which is a consequence

of the Fourier transform of Hermite functions and their completeness condition,
∞∑
n=0

inΨn(ξ1)Ψn(ξ2) =
1√
2π
eiξ1ξ2 . (28)

The contraction limit of (16), when j → ∞ and m→ −∞ such that j +m = n is

fixed and finite, and q = ξ
√
j, q′ = ξ′

√
j, results now from the limit of the previous

section; it is

lim
j→∞

√
jKj

q,q′ = lim
j→∞

√
jdjq′,q

(
1

2
π

)
=

1√
2π
eiξ
′ξ . (29)

6. Conclusions

The finite oscillator model is built with the Lie algebra u(2) [or su(2) for most

practical matters], and a new physical interpretation which is distinct from the

traditional one of angular momentum theory. In this article we have shown that

the finite oscillator contracts to the ordinary quantum oscillator, on the level of the

algebra, of the wave functions, and of their Fourier transform.
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Based on the theory of the one-dimensional harmonic oscillator, many physical

phenomena have been modeled in quantum optics, in signal processing, and other

fields apparently unrelated to the original quantum system. In many of these cases,

there is the need for a finite counterpart system to account for pixellated objects,18

or systems (linear or nonlinear) that have both a ground- and a highest-energy

state (see e.g. Ref. 20).

Through contraction, su(2) mothers several other three-dimensional Lie alge-

bras. The classical Inönü–Wigner contraction1 to the Euclidean algebras iso(2)

brings the finite oscillator to a two-dimensional Helmholtz system, or to a discrete,

one-dimensional infinite system,24 according to which generator is left unscaled.

Further, D-dimensional finite oscillator models have been proposed based on the

direct sum of D su(2) algebras or, less obviously, on Lie algebras so(D + 2).6,25 A

firm connection with the simplest case examined here will guarantee the correspon-

dence principle for the other models.
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